
Induction and Inquiry via Probabilistic Reasoning over Language and Code

Anonymous Author(s)

Affiliation

Address

email

Abstract

1

2 1 Introduction

3 Inductive reasoning is a cornerstone of general intelligence: Learning new concepts from few
4 examples, and revising those concepts in light of new evidence. Limited data is inherently ambiguous,
5 motivating an inquiry process of asking questions or doing experiments to resolve uncertainty. This
6 induction-inquiry cycle unfolds sequentially over time, with new data streaming in, because inquiry
7 is an active process of asking questions and getting answers. Modeling human induction and inquiry
8 is a longstanding challenge because such models must handle uncertainty, have a flexible hypothesis
9 class covering much of what humans can think of, and support efficient online computation. These
10 objectives interact: A flexible, open-ended hypothesis class yields more uncertainty, because there are
11 now more competing explanations for the evidence. But this causes reasoning to be computationally
12 expensive. Decades of research [1, 2, 3] suggest human inductive reasoning approximates probabilistic
13 Bayesian belief updates, but we still cannot truly model what people seem to do: Efficient online
14 induction and inquiry over flexible open-ended hypothesis spaces. This is the challenge we take on.

15 We start with the Bayesian cognitive modeling paradigm, which imposes probabilistic norms for
16 calculating how credible a belief should be, but as a paradigm, does not say what people can
17 believe in the first place—how they can efficiently reason about an endlessly open-ended range of
18 concepts. Prior models of inductive reasoning [4, 5] further posit an inner *Language of Thought*,
19 whether formal logic, symbolic schemas or Bayes net templates, or probabilistic programs, which
20 formalize and delineate what hypotheses are representable, and therefore learnable. The literature on
21 intuitive theories and cognitive development has also proposed natural language as a representation
22 of hypotheses [6, 7, 8], but this has never been made formal.

23 Here we find that human behavior across a range of induction and inquiry setups is best explained by
24 sequential probabilistic reasoning over *mental programs*, which we treat as a mix of natural language
25 and computer source code (fig. 1). Although the idea of an inner Language of Thought is an old one,
26 its past computational instantiations assumed rigid logical forms that are less malleable than natural
27 language, and less practical than actual programming languages.

28 Why represent knowledge as a mix of natural language and source code? Language and code are
29 generic representations for communicating and formalizing human knowledge, but only recently
30 have they become tractable targets of inference, owing primarily to Large Language Models (LLMs).
31 Our models equip LLMs with sequential probabilistic reasoning. The resulting models reproduce
32 sequential phenomena such as garden-pathing and anchoring; capture gradations of uncertainty; and
33 scale to more complex concepts, because of the powerful combination of the expressivity of language
34 and the top-down feedback of code. Furthermore, we show how these models can perform human-like
35 active inquiry, closing the sequential learning loop which alternates between induction and inquiry.

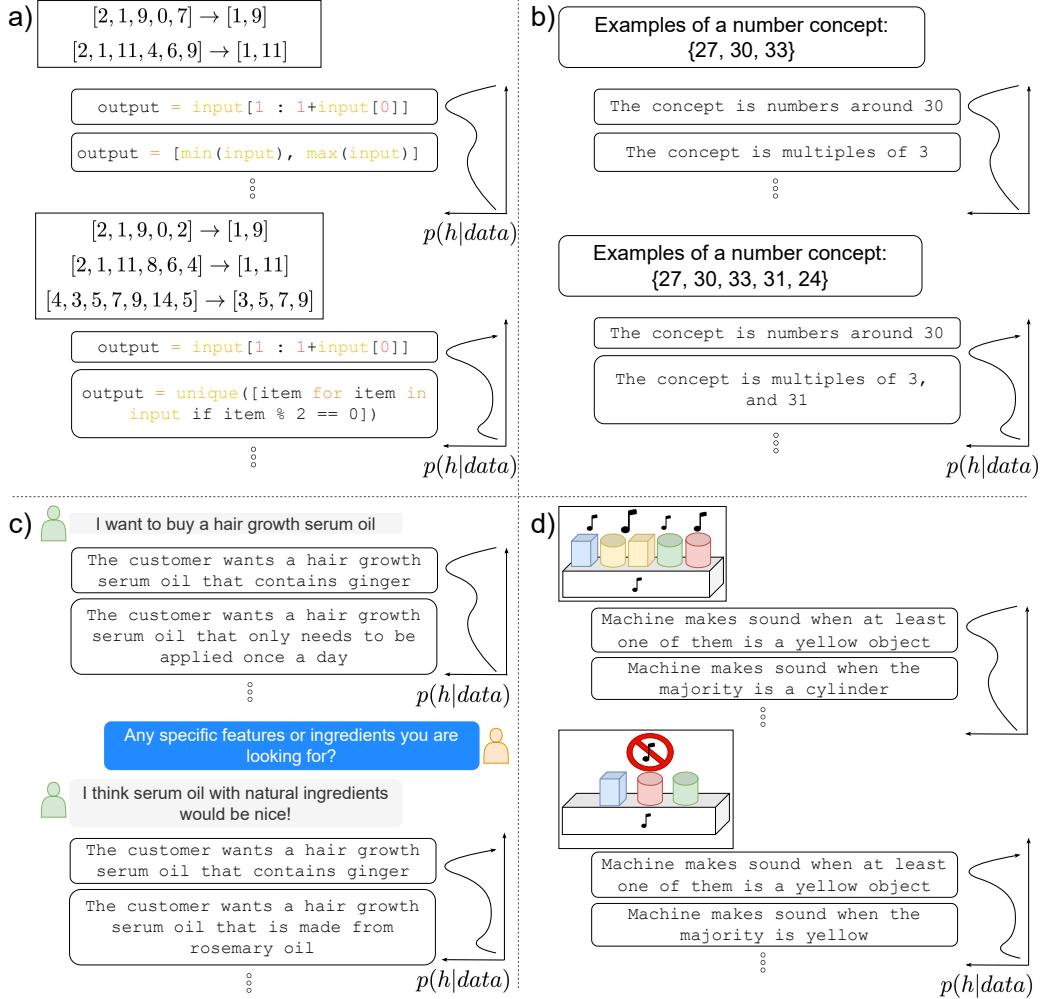


Figure 1: a) - d) show sequential inference problems that we study in this work and illustrate how, in each problem, Bayesian beliefs may change upon seeing new observations over time.

36 Speculatively, our model suggests mental representations that lie on a continuum between logic and
 37 language, and shows how this representation is compatible with Bayesian reasoning.

38 2 Computational Model

39 Humans encounter evidence sequentially over time: One instance of a new category is seen first,
 40 another second, etc. Limited data is inherently ambiguous, so we model humans as mentally
 41 representing multiple competing hypotheses, maintaining those that both fit the data and admit simple
 42 natural-language description. Upon receiving new evidence, humans update their beliefs: They
 43 inductively reason about whether new data forces new conclusions, or eliminates old hypotheses.
 44 Therefore our model compares the latest hypotheses to the data, and stochastically revises them
 45 to better fit the data. Representing hypothesis in language and code, and then revising hypotheses
 46 using large language models, allows efficient open-ended reasoning. Modeling multiple competing
 47 hypotheses captures the intuition that people can think of several different explanations, which allows
 48 rational inquiry by asking questions that optimally split the competing hypotheses.

49 Formally, given a sequence of T examples $e_{1:T}$, our model hypothesizes mental programs h . Each
 50 mental program has two pieces: (1) a natural language description and (2) a Python implementation.
 51 Mixing language and code allows freely generating ideas in natural language, but forces formalizing
 52 hypothesis into executable form. We define priors $p(h)$ that favor short natural language descriptions,

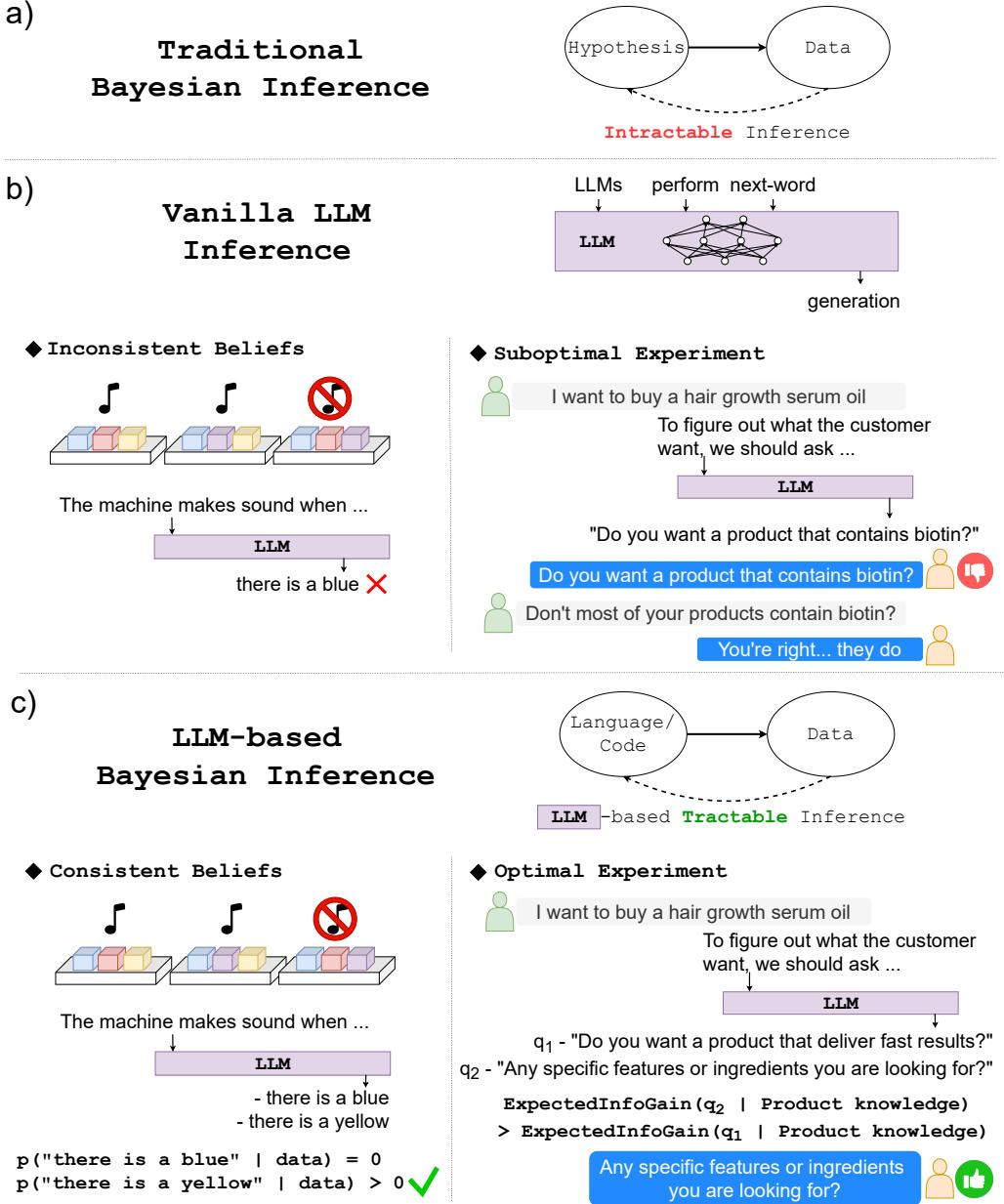


Figure 2: a) - c) show three types of inference methods: traditional Bayesian, vanilla LLM, and LLM-based Bayesian (ours). LLM-based Bayesian inference in language/code hypothesis space is the only method that is tractable while maintaining consistent beliefs and optimal experiments.

53 and likelihoods $p(e_t|h)$ that favor program executions that match the evidence. The language prior
 54 and code likelihood together define a posterior $p(h|e_{1:T})$, which evolves over time:

$$p(h|e_{1:T}) \propto p(e_T|h)p(h|e_{1:T-1}) \propto p(h) \prod_{t \leq T} p(e_t|h) \quad (1)$$

55 The above posterior is intractable because infinitely many hypotheses could explain the data. Instead,
 56 humans could only plausibly consider a small finite set of hypotheses.

57 How should we generate this small pool of possible hypotheses, given the vast hypothesis space
 58 of natural language and code? While we can compare competing hypotheses given the prior and
 59 likelihood (eq. (1)), we still need a heuristic proposal mechanism to know which hypotheses to

60 consider in the first place. LLMs are a natural choice. From a cognitive perspective, they are a
 61 fast bottom-up mechanism for suggesting different hypotheses, built through associative learning
 62 mechanisms that encode certain human priors by pretraining on human language. From an engineering
 63 standpoint, they serve as a data-driven proposal distribution over hypotheses h that *might* explain
 64 $e_{1:t}$, and where we can down-weight samples that do not fit the data by reweighing to target $p(h|e_{1:t})$,
 65 mitigating LLM hallucinations.

66 To evolve beliefs with each new piece of evidence, we use LLM-augmented Sequential Monte
 67 Carlo [9, 10], specifically LLM-SMC-S [11] (fig. 3). This maintains K particles $\{h_t^i\}_{i=1}^K$ representing
 68 candidate hypotheses after observing t examples, $e_{1:t}$. A prompt implements a bottom-up proposal
 69 distribution $q(h_{t+1}|e_{1:t+1}, \{h_t^i\}_{i=1}^K)$ which generates a new set of particles $\{h_{t+1}^i\}_{i=1}^K$, given the
 70 new evidence. Departing from standard SMC, we propose new particles given a global view of the
 71 previous posterior, which means all previous hypotheses are available in-context (Methods).

72 A bottom-up associative learner is not the only way of proposing hypotheses, but we think it is close
 73 to what happens in humans when drawing fast inferences from sparse data. Other related cognitive
 74 models either curtail the hypothesis space *a priori*—restricting what can be learned in principle—or
 75 demand exorbitant sampling budgets in an effort to cover the vast space of mental programs [12, 13].
 76 But an LLM is not the whole story: Top-down probabilistic reasoning dampens the unpredictability
 77 of the language model; allows thinking longer by proposing more hypotheses; and supports a broader
 78 range of probabilistic queries, such as asking questions and doing experiments to resolve uncertainty
 79 by maximizing information gain.

80 3 Mental Algorithms from Sequential Observations

81 3.1 List functions

82 If humans can infer mental programs, then they should be able to learn new algorithms from examples.
 83 Many behavioral and modeling studies investigate this [14, 15, 16, 17, 18], but recently Rule et al. [19]
 84 substantially increased the behavioral and modeling challenge by testing human learners on 250
 85 different algorithms, each learnable from a sequence of examples (fig. 1; algorithms 1-100 are easier
 86 to model, 101-250 are more challenging). This benchmark poses a modeling challenge because of
 87 the massive combinatorial search space of possible algorithms. To address this search problem, Rule
 88 et al. [19] design a custom programming language equipped with high-level search moves (termed

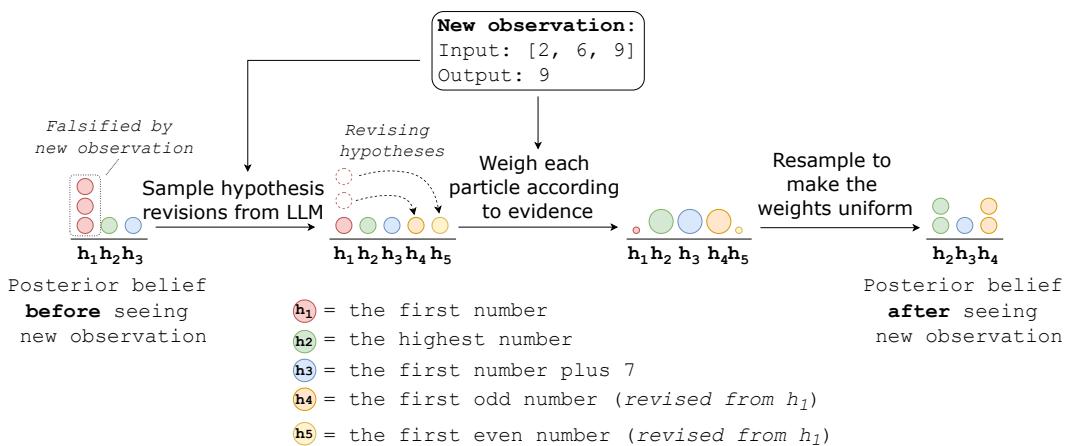


Figure 3: An illustration of how Sequential Monte Carlo methods change posterior belief upon receiving new observation. Sequential Monte Carlo method tracks a small number of hypotheses (called particles) represented above by circles. After each experiment, some particles are revised in light of the new observation, with the help of LLM. Then, the particles are reweighed according to how well each explains the observations we have seen so far. Resampling adjusts the weights of particles to be uniform by pruning low-probability hypotheses and multiplying high-probability ones.

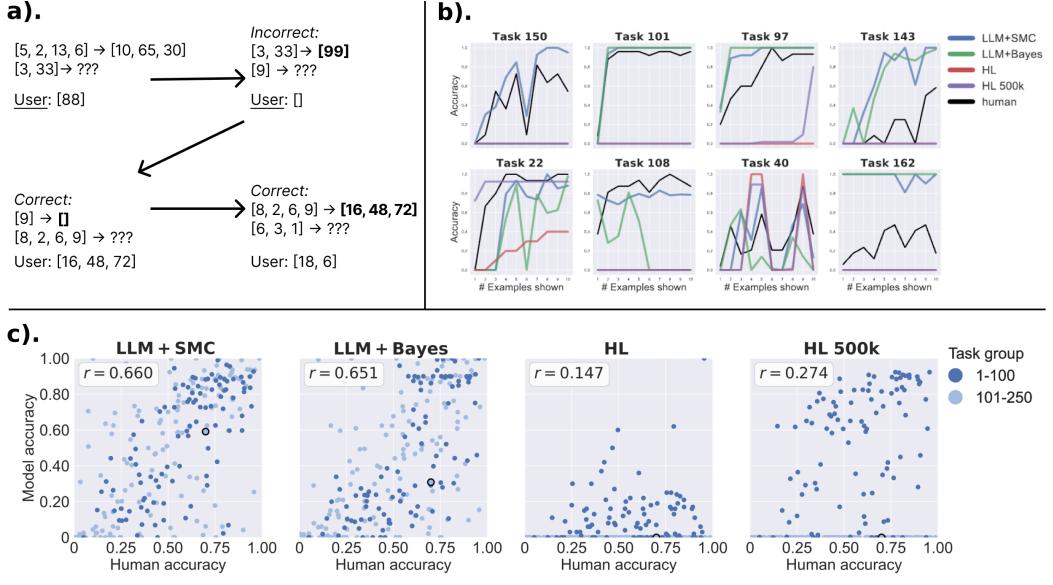


Figure 4: a). An example list function task: the participant is iteratively given examples and asked for predictions. This task – 150 – is visualized in panels b). (labeled) and c). (black outline). b). Posterior predictive curves for 4 models, and average accuracy for participants, on 8 randomly drawn tasks, across the 10 examples. Note that accuracy tends to increase as participants / models are shown more examples. c). Scatter plot of model accuracy and human accuracy for the 4 models in panel b). Model mean accuracy on the List Functions domain across examples versus mean human accuracy across participants and examples ($s = 5$ except for HL 500k, where $s = 500,000$).

89 **HL**), searching through up to 500k programs for each new input-output to find programs that explain
90 the data. Plausibly, humans consider far fewer hypotheses— yet still learn these algorithms.

91 We test our model’s ability to learn these algorithms while proposing (searching) far fewer hypotheses,
92 and also test our model’s ability to capture trial-by-trial dynamics of sequential inference. To study
93 our ability to predict which algorithms are easier or harder to learn, Figure 4c plots human vs. model
94 accuracy on 250 algorithms averaged across trials. At a search budget of just 5 proposals, our model
95 fits the human data far better than HL given 500k proposals. This suggests a bottom-up proposal
96 process could explain the search efficiency of human learners: With a neural proposal distribution,
97 just a few samples suffice to predict average human accuracy. Modeling the sequence of examples
98 proves important: Switching from Sequential Monte Carlo to Importance Sampling—which processes
99 all examples at once—degrades model fit (fig. 4c, Importance Sampling). Figure 4b illustrates trial-
100 by-trial accuracy for 8 randomly selected algorithms. Our model does not capture every detail of
101 these learning curves, but for 70/100 algorithms, it matches these curves best (under MSE), with
102 the remaining 30/100 roughly equally split between a best fit to HL, and a best fit to Importance
103 Sampling.

104 The dataset of Rule et al. served as a significant challenge to both LLMs and conventional symbolic
105 methods. Humans can learn these algorithms, but it took years of engineering to build a similarly
106 performant model. Even then, prior work [19] confined itself to the 100 easier algorithms, and
107 expended search effort far exceeding what humans plausibly perform. LLMs alone neither solve
108 these problems nor fit human data. But LLM-guided sequential Bayesian inference suffices to solve
109 this benchmark at human level, and reproduce basic human behavioral features.

110 3.2 Number concepts

111 Many human concepts are *categories*, rather than algorithmic functions, and are learned from only
112 positive examples, such telling a child that an animal is ‘cat’, but not saying it isn’t a giraffe. Here we
113 study sequential learning of number categories, such as ‘numbers ending in 3’ or ‘square numbers
114 bigger than 20’, following [20, 21]. When learning such concepts from small amounts of sequential

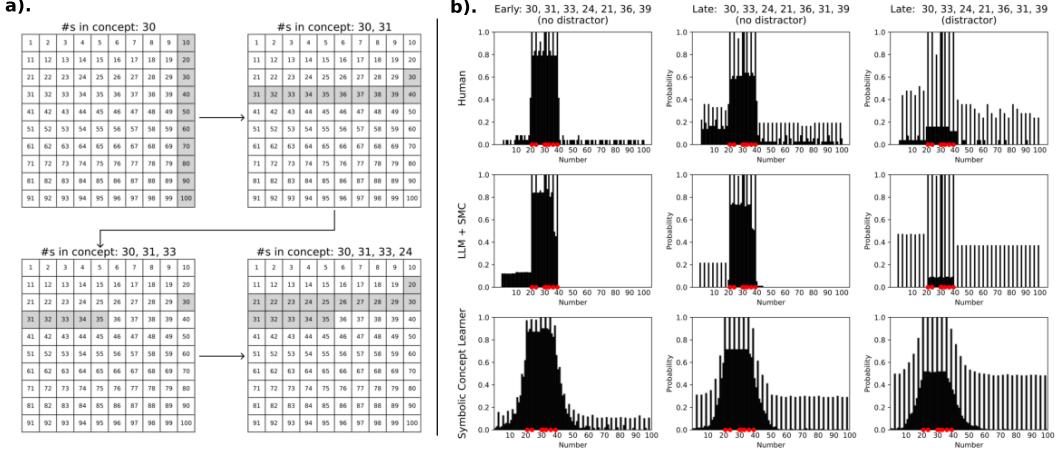


Figure 5: a). Demonstration of the number game task. Participants are sequentially shown a new example of an unknown number concept and asked to predict what other numbers 1-100 are in the concept (gray). b). Human data, our model predictions, and predictions from Thaker et al. [20] in 3 conditions. The early, distractor condition is omitted for clarity (results are nearly indistinguishable from the early, no distractor case).

115 data, humans show ordering effects such as *anchoring* or *garden-pathing*: A category that seems
 116 likely in earlier examples will dominate later inferences, even if invalidated by later data. For example,
 117 given the positive examples 30, 31, 33, humans reliably infer a category such as *numbers around 30*,
 118 even when later data suggests multiples of 3, such as 24, 21, 36, 39. Ordering the distractor 31 late in
 119 the sequence, such as 30, 33, 24, 21, 36, 31, 39, has the opposite effect: Humans anchor to *multiples*
 120 of *three*, and discount the distractor.

121 Thaker et al. [20] study human number-category anchoring, which we computationally model
 122 (Figure 5). Our model’s sequential inference successfully reproduces the ordering effects seen in
 123 humans, and surprisingly, fits the human data better at smaller compute budget than the custom
 124 model in Thaker et al. Our model also reproduces attentional effects: When placed under greater
 125 cognitive load (a secondary distractor task), humans anchor more strongly. Modeling cognitive load
 126 by reducing our sampling budget replicates this effect (Supplement).

127 4 Resolving Uncertainty by Doing Experiments and Asking Questions

128 Humans can procure new data to aid learning by asking questions or trying out experiments in the
 129 real world, such as eating a new kind of berry to tell if it makes us sick. But it costs something to
 130 acquire new learning data, so humans need to decide whether to incur the cost of doing an experiment
 131 or asking a question to resolve uncertainty. Building on our sequential inference setup, we treat
 132 humans as considering different experiments ξ , and pick the experiment which maximizes expected
 133 information gain, under their particle-based approximate probabilistic beliefs:

$$\xi^* = \arg \max_{\xi} \mathbb{E}_{p(e|\xi, e_{1:t})} [D_{\text{KL}}(p(h|e_{1:t}, e) \| p(h|e_{1:t}))] \quad (2)$$

134 Exactly computing expected information gain is intractable. We make a particle-based approximation
 135 by treating the hypothesis space as the set of unique current particles, enabling tractable approximation
 136 of the requisite distributions.

137 We first investigate this model by comparing its behavior to humans playing the game Zendo,
 138 which resembles classic ‘blicket’ studies in developmental psychology [22, 23, 24], but adds active
 139 experimentation. In Zendo, players infer a hidden binary category by building constructions from
 140 colored shapes, and then receiving feedback on if their construction belongs to the hidden category
 141 (Figure 6a). Each construction is an experiment ξ . We take human data from [25], where after
 142 7 rounds of experimentation, participants make 8 predictions on holdout test constructions. Our
 143 model mimics a human participant by alternating between experimentation and inference, and finally
 144 testing on the the same holdout constructions. The resulting model captures fine-grained structure in

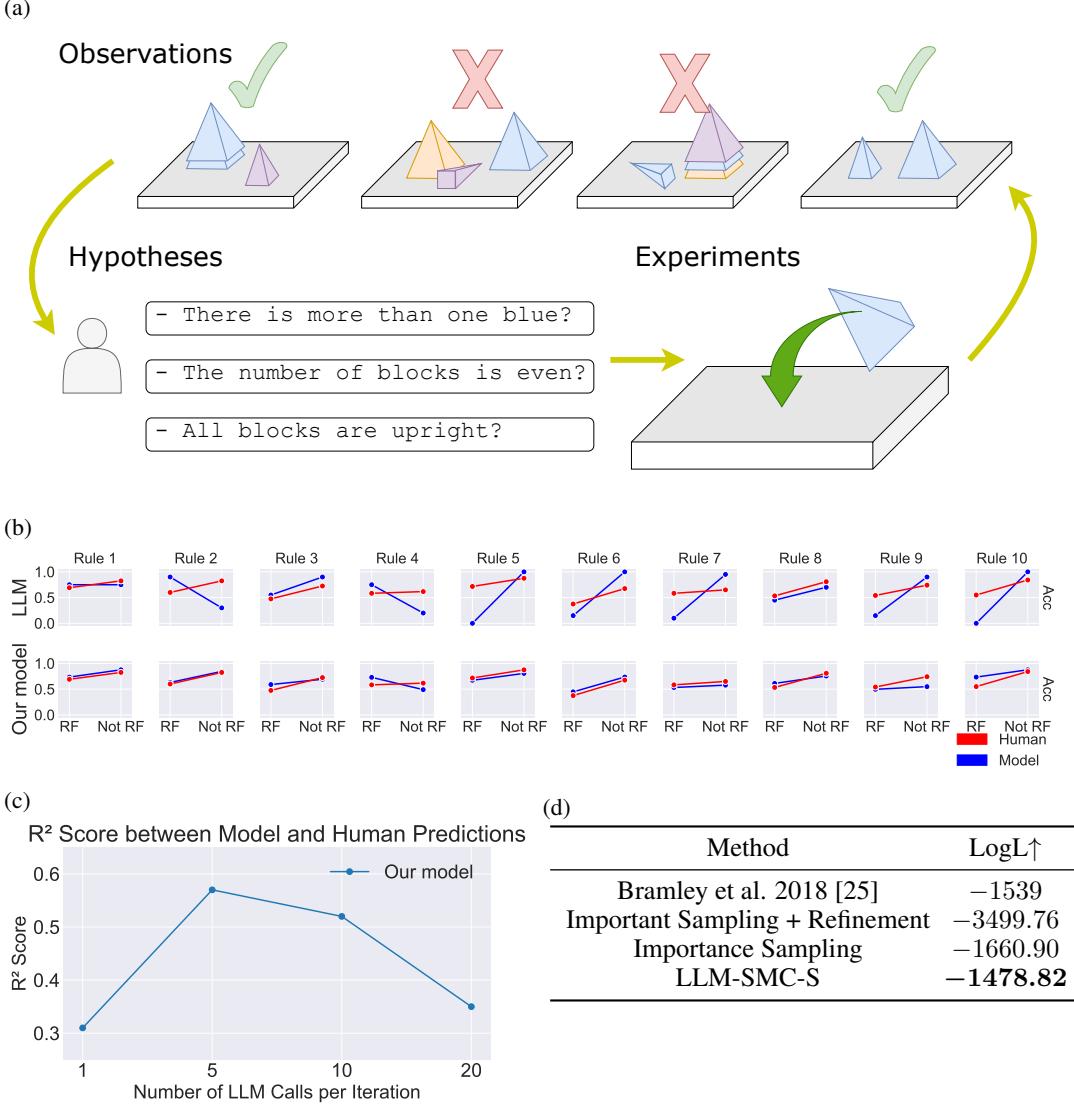


Figure 6: (a) Zendo gameplay (b) Human accuracy on examples that do not belong to the category (not rule following, ‘Not RF’) is higher than accuracy on in-category examples (rule following, ‘RF’). Our model reproduces this phenomenon, while an LLM on its own does not. (c) Human-model R^2 has a U-shaped relationship to compute budget: Humans are boundedly rational, and increasing compute eventually degrades model fit. (d) The log likelihood of the human data is highest under our model, and surprisingly surpasses the fit of a custom model designed for this dataset [25], despite the fact that we do not hand-engineer a dataset-specific hypothesis space.

145 human error patterns (fig. 6b). As before, we get insight into boundedly-rational human behavior by
 146 modulating the inference-time budget (fig. 6c), and despite minimal domain-specific engineering,
 147 our model fits the human data better than a custom Bayesian learner designed specifically for this
 148 dataset (fig. 6d). We find therefore that the LLM-guided Bayesian learner is surprisingly versatile:
 149 Rational probabilistic reasoning tied to LLM backends support both concept learning and active
 150 experimentation, giving an induction-inquiry cycle that predicts human behavior better than LLMs or
 151 Bayes on their own.

152 **Beyond Code: Asking Questions.** In social contexts, the analog of an experiment is question-
 153 asking. Because our model operates over natural language, we can also use it to generate informative
 154 questions. We study this in a web shopping task where the model serves as a shopping assistant, and

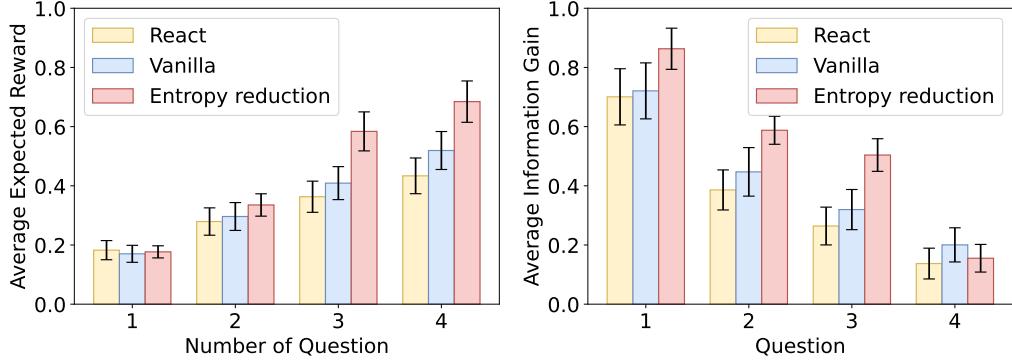


Figure 7: (Left) Average expected binary reward at increasing number of number of questions. (Right) Average information gain at each question.

155 asks natural-language questions that optimize information gain (eq. (2)). As a proof-of-concept, we
 156 assume a finite hypothesis space of products a customer can purchase, and perform exact Bayesian
 157 belief updates. An experiment ξ is a natural language question, an example e is a question-answer
 158 pair, and hypotheses h are different products (such as different brands of shampoo).
 159 The agreement of a product h and a question-answer pair e is not generally expressible as a Python
 160 program. Therefore the likelihood $p(e|h)$ simply queries a language model, rather than generate code.
 161 Conceptually our argument is that *neither* natural language nor high-level programming languages
 162 truly capture the biases and expressiveness of human mental programs, so we should not expect that
 163 every problem is best solved by a hybrid of language and code.
 164 Figure 7 compares our model with basic LLM prompts and also ReAct, which prompts an LLM to
 165 think before it acts. Our model chooses more informative questions, as defined by information gain,
 166 giving a higher chance of discovering the customer’s preferred product. Although we mainly focus
 167 on modeling human data, we believe that these methods can also impact how AI systems are built.

168 5 Discussion

169 How people learn new categories, laws, and abstract concepts from the sparse streaming data of
 170 experience is a difficult open question. Candidate computational models must be simultaneously
 171 flexible and efficient—which are generally in tension. To make progress on that question, our models
 172 make mechanistic commitments about the underlying mental representation—code and language—
 173 and the underlying mental algorithms, which use neurally-guided sequential inference for tractable
 174 reasoning over open-ended hypothesis spaces. Across a range of inductive reasoning problems, the
 175 resulting model fits human data better than specialized models designed for each individual behavioral
 176 experiment, and further allow induction to alternate with inquiry, explaining how online learning
 177 and acting can cooperate together. Our results suggest a language of thought that lies between logic
 178 and language, and also suggest that we are not far from a unified computational account of human
 179 induction and inquiry that could explain how humans think flexibly across the endless range of
 180 situations in which these cognitive faculties can be brought to bear.

181 **Cognitive Implications.** Our models assume a solution space whose hypotheses are at least
 182 definable in clear English language. Yet many human concepts are famously tricky to formalize,
 183 such as the meaning of ‘chair’ [?] or even ‘dog walking’ [26]. It remains open whether symbolic
 184 hypotheses are the right representation for such categories, but our view is that a symbolic language of
 185 thought remains the best account of inductive reasoning from small data. We use a specific language
 186 of thought termed *mental programs*, which combines natural language and code. Code can represent
 187 what would be hard to precisely express language, such as detailed physical properties, the shape of
 188 a hand-drawn character [27], or the precise rules of a board game. Language can represent fuzzier,
 189 higher-level propositions. Current AI heavily uses language as a knowledge representation, and
 190 achieves unprecedented coverage as a result: LLMs can converse about virtually every human topic,
 191 even if they do not always make sense. Classic Bayesian models using symbolic programs have

192 succeeded at modeling humans within narrow domains by tailoring the representation to the problem
193 domain [28, 29, 30, 25, 31, 32, 33, 34]. Our work suggests that Bayesian priors should operate over
194 in language-like representations, but that the grounding between hypothesis and data—the likelihood
195 function—is a better fit for programs. Potentially, a future unified representation could serve both
196 roles, which we view as an important open direction.

197 Bayesian cognitive models are known both for their predictive power and their computational
198 intractability, and have been criticized as lacking an account of their biological implementation.
199 Our work is not alone in trying to address these issues with Bayesian models: Metalearning offers
200 another tractable neural instantiation of Bayes, where a neural network approximates the Bayesian
201 predictive distribution [35, 36, 37] in a single forward pass, either via in-context learning or via
202 MAML-style [38] weight updates. Unlike our work, such models do not reason over latent discrete
203 representations. This is complementary to our models: We construct explicit verbalizable hypotheses,
204 do not require training new neural networks, and can trade more inference-time compute for better
205 predictions. At the same time, relative to metalearning, our approach has important limitations: It
206 cannot learn what pretrained models do not already understand, and is unlikely to be a good account
207 of fast, non-verbalizable inference. Roughly, we think of our models as a System 2 way of using
208 neural networks for approximate reasoning, while metalearning is best thought of as a fast System 1
209 process. Humans likely use both strategies when thinking probabilistically.

210 **Neural networks and Bayes.** LLMs are probabilistic models trained on masses of human data—
211 yet, in isolation, they do not reproduce human behavior in the tasks considered here. Why is that?
212 Fundamentally, probabilistic inference requires reasoning about uncertainty. Reasoning requires
213 expending variable compute, to think longer on harder problems. Handling uncertainty further
214 constrains the model to the laws of probability. The newest LLMs are increasingly trained to reason
215 via reinforcement learning (using chain-of-thought [39]), but to date such training focuses on problem-
216 solving, not probabilistic inference. Chain-of-thought may also not be sufficiently constrained to
217 ensure sound convergence, unlike the classic Monte Carlo algorithms that we and others build on [10].
218 It remains open however whether future LLMs could implicitly learn to mimic the reasoning patterns
219 of sound inference algorithms.

220 **cut? Engineering Implications.** To get to human-level AI, the dominant paradigm today trains
221 larger models on more data, effectively scaling learning. We consider scaling thinking, but very
222 differently from large reasoning model such as OpenAI’s O1 [40] and Deepseek’s R1 [41]: Using
223 principled probabilistic inference, critically in a way that leverages and complements the dominant
224 scaling route by using LLMs as foundational components. We hope that this work can serve as
225 a blueprint for combining LLMs with classic probabilistic reasoning methods, whose range of
226 application is wide-ranging, including program analysis, social dialogue (i.e. pragmatic inference),
227 forecasting, planning, and physical reasoning, to name a few. Our pilot experiments in question-asking
228 are one example of this.

229 AMBITIOUS FORWARD LOOKING CONCLUSION

230 References

- 231 [1] John R. Anderson. The adaptive character of thought. 1990.
- 232 [2] Thomas L. Griffiths, Falk Lieder, and Noah D. Goodman. Rational use of cognitive resources: Levels of
233 analysis between the computational and the algorithmic. *Topics in Cognitive Science*, 7(2):217–229, 2015.
- 234 [3] T.L. Griffiths, N. Chater, and J. Tenenbaum. *Bayesian Models of Cognition: Reverse Engineering the Mind*.
235 MIT Press, 2024.
- 236 [4] Jake Quilty-Dunn, Nicolas Porot, and Eric Mandelbaum. The best game in town: The reemergence of the
237 language-of-thought hypothesis across the cognitive sciences. *Behavioral and Brain Sciences*, 46:e261,
238 2023.
- 239 [5] Steven T. Piantadosi. *Learning and the language of thought*. PhD thesis, MIT, 2011.
- 240 [6] Susan Carey. The origin of concepts: A précis. *The Behavioral and brain sciences*, 34(3):113, 2011.
- 241 [7] Elizabeth Spelke. *What Makes Us Smart? Core Knowledge and Natural Language*, pages 277–312. 03
242 2003.

243 [8] Elizabeth Spelke. *What babies know: Core knowledge and composition volume 1*, volume 1. Oxford
244 University Press, 2022.

245 [9] Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash Mansinghka. Sequential monte carlo
246 steering of large language models using probabilistic programs. In *ICML 2023 Workshop: Sampling and*
247 *Optimization in Discrete Space*.

248 [10] Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in language
249 models via twisted sequential monte carlo. *arXiv preprint arXiv:2404.17546*, 2024.

250 [11] Wasu Top Piriyakulkij, Cassidy Langenfeld, Tuan Anh Le, and Kevin Ellis. Doing experiments and revising
251 rules with natural language and probabilistic reasoning. In *Neural Information Processing Systems*, 2024.

252 [12] Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. The logical primitives of thought:
253 Empirical foundations for compositional cognitive models. *Psychological review*, 123(4):392, 2016.

254 [13] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
255 Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Bootstrapping inductive program
256 synthesis with wake-sleep library learning. In *PLDI*, 2021.

257 [14] Steven T Piantadosi. The computational origin of representation and conceptual change. 2016.

258 [15] Brenden M Lake and Steven T Piantadosi. People infer recursive visual concepts from just a few examples.
259 *Computational Brain & Behavior*, 3(1):54–65, 2020.

260 [16] Bonan Zhao, Christopher G Lucas, and Neil R Bramley. A model of conceptual bootstrapping in human
261 cognition. *Nature Human Behaviour*, 8(1):125–136, 2024.

262 [17] Céline Hocquette, Johannes Langer, Andrew Cropper, and Ute Schmid. Can humans teach machines to
263 code?, 2025.

264 [18] Douglas R Hofstadter and Melanie Mitchell. The copycat project: A model of mental fluidity and
265 analogy-making. 1994.

266 [19] Joshua S Rule, Steven T Piantadosi, Andrew Cropper, Kevin Ellis, Maxwell Nye, and Joshua B Tenenbaum.
267 Symbolic metaprogram search improves learning efficiency and explains rule learning in humans. *Nature
268 Communications*, 15(1):6847, 2024.

269 [20] Pratiksha Thaker, Joshua B. Tenenbaum, and Samuel J. Gershman. Online learning of symbolic concepts.
270 *Journal of Mathematical Psychology*, 77:10–20, 2017.

271 [21] Joshua Brett Tenenbaum. *A Bayesian framework for concept learning*. PhD thesis, Massachusetts Institute
272 of Technology, 1999.

273 [22] Alison Gopnik and David M Sobel. Detecting blickets: How young children use information about novel
274 causal powers in categorization and induction. *Child development*, 71(5):1205–1222, 2000.

275 [23] Claire Cook, Noah D. Goodman, and Laura E. Schulz. Where science starts: Spontaneous experiments
276 in preschoolers' exploratory play. *Cognition*, 120(3):341–349, 2011. Probabilistic models of cognitive
277 development.

278 [24] Chi Zhang, Baoxiong Jia, Mark Edmonds, Song-Chun Zhu, and Yixin Zhu. Acre: Abstract causal reasoning
279 beyond covariation. In *Proceedings of the ieee/cvpr conference on computer vision and pattern recognition*,
280 pages 10643–10653, 2021.

281 [25] Neil Bramley, Anselm Rothe, Josh Tenenbaum, Fei Xu, and Todd Gureckis. Grounding compositional
282 hypothesis generation in specific instances. In *Proceedings of the 40th annual conference of the cognitive
283 science society*, 2018.

284 [26] Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell. Active object localization in visual situations,
285 2016.

286 [27] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
287 probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

288 [28] Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L Griffiths. A rational analysis of
289 rule-based concept learning. *Cognitive science*, 32(1):108–154, 2008.

290 [29] Marie Amalric, Liping Wang, Pierre Pica, Santiago Figueira, Mariano Sigman, and Stanislas Dehaene.
 291 The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and
 292 preschoolers. *PLoS computational biology*, 13(1):e1005273, 2017.

293 [30] Kevin Ellis, Adam Albright, Armando Solar-Lezama, Joshua B Tenenbaum, and Timothy J O'Donnell.
 294 Synthesizing theories of human language with bayesian program induction. *Nature communications*,
 295 13(1):5024, 2022.

296 [31] Goker Erdogan, Ilker Yildirim, and Robert A Jacobs. From sensory signals to modality-independent
 297 conceptual representations: A probabilistic language of thought approach. *PLoS computational biology*,
 298 11(11):e1004610, 2015.

299 [32] Mathias Sablé-Meyer and Stanislas Dehaene. Visual sequence primitives in humans. Master's thesis, ENS,
 300 2017. DSL proposal in appendix: A proposal for a Language of Shape.

301 [33] Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for drawing by
 302 efficient motor program induction. *Advances in Neural Information Processing Systems*, 33:2686–2697,
 303 2020.

304 [34] Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard, and Vikash K Mansinghka.
 305 Bayesian synthesis of probabilistic programs for automatic data modeling. *Proceedings of the ACM on
 306 Programming Languages*, 3(POPL):1–32, 2019.

307 [35] Brenden M Lake and Marco Baroni. Human-like systematic generalization through a meta-learning neural
 308 network. *Nature*, 623(7985):115–121, 2023.

309 [36] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning
 310 as implicit bayesian inference. In *International Conference on Learning Representations*.

311 [37] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-based
 312 meta-learning as hierarchical bayes. In *International Conference on Learning Representations*, 2018.

313 [38] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
 314 networks. In *International conference on machine learning*, pages 1126–1135. PMLR, 2017.

315 [39] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
 316 Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
 317 Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
 318 Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
 319 Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
 320 H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui
 321 Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
 322 Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu,
 323 Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
 324 Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
 325 Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 326 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu
 327 Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
 328 Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
 329 Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen,
 330 Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng
 331 Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
 332 Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
 333 Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi
 334 Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue
 335 Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X.
 336 Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
 337 Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 338 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,
 339 Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1:
 340 Incentivizing reasoning capability in llms via reinforcement learning, 2025.

341 [40] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
 342 yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
 343 arXiv:2412.16720*, 2024.

344 [41] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
 345 Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
 346 learning. *arXiv preprint arXiv:2501.12948*, 2025.

347 **A Appendix**

348 **A.1 Redundant/Move to methods**

349 sample-matched model accuracy versus human accuracy for the **Full model**, **HL**, and **Sam-**

350 **ple+Weight** for a random subset of 40 tasks. Each model uses 5 samples / search steps per example.

351 Across the 100 tasks, the **Full model** has the closest fit to human data (measured by mean squared

352 error (MSE) in the 10 examples), for 70 of 100 tasks, **Sample+Weight** for 17 of 100 tasks, and **HL**

353 for the remaining 13.

354 the model average accuracy of the model against the average human accuracy across all 100 algo-

355 rithms,

356 ofhas a comprehensive algorithm-learning

357 We first study algorithmic and numerical concepts (Figure 1a-b): Learning, from input-outputs,

358 algorithms on lists of numbers (), and learning, from positive-only examples, a novel number

359 category, such as numbers from 30-40.

360 **Algorithmic concepts.** [19]

361 In the List Functions domain, the task is to, given a set of input-output examples, induce the underlying

362 program which maps each input list to its corresponding output list. The learner then must apply this

363 induced program to a new input for which the output is hidden. One such task from the domain is:

364 We model the human data using the LLM+SMC model outlined above. We use gpt-4-0613 [?] as

365 our proposal distribution q over natural language language hypotheses H . Preliminary experiments

366 showed that other publicly-accessible LLMs perform substantially worse (**TODO: these experiments**

367 **were 1 year ago. I should probably re-run w/ more modern (and much cheaper) models**). For

368 our prior, we find that a simple length-prior $p(H) \propto \frac{1}{|H|}$ works just as well as a linear prior model

369 fitted to human data, in contrast to previous work in concept learning.

370 For our likelihood function, we use a simple likelihood function

$$P(X_{1:K} | H) = \prod_{1 \leq k \leq K} (1 - \theta) \frac{\mathbb{1}[X_k^o = H(X_k^i)]}{K} + \theta \frac{\mathbb{1}[X_k^o \neq H(X_k^i)]}{K} \quad (3)$$

371 where θ is the probability that an example is mislabeled. Note that the likelihood increases monotonically

372 with the number of correct examples; a hypothesis will always have a higher likelihood if it

373 can directly explain more of the data than another hypothesis. Initially, we set $\theta = \frac{1}{100}$, and after

374 proposing all hypotheses, we fit θ to human data using k -fold cross-validation, with $k = 10$. Fitting

375 the likelihood parameters, in this case only θ , while running the model is interesting future work that

376 may improve performance.

377 We compare our model – **Full model** – with two baselines. The **Hacker-like (HL)** model [?] is a

378 search algorithm over *meta-programs* that uses *term-rewriting systems* to drastically improve search

379 efficiency over alternative symbolic search algorithms such as Fleet [?] and Metagol [?]. The

380 **Sample+Weight** baseline removes the sequential aspect of our model, treating each example k as a

381 separate task.