Induction and Inquiry via Probabilistic Reasoning
over Language and Code

Anonymous Author(s)
Affiliation
Address

email

Abstract

1 Introduction

Inductive reasoning is a cornerstone of general intelligence: Learning new concepts from few
examples, and revising those concepts in light of new evidence. Limited data is inherently ambiguous,
motivating an inquiry process of asking questions or doing experiments to resolve uncertainty. This
induction-inquiry cycle unfolds sequentially over time, with new data streaming in, because inquiry
is an active process of asking questions and getting answers. Modeling human induction and inquiry
is a longstanding challenge because such models must handle uncertainty, have a flexible hypothesis
class covering much of what humans can think of, and support efficient online computation. These
objectives interact: A flexible, open-ended hypothesis class yields more uncertainty, because there are
now more competing explanations for the evidence. But this causes reasoning to be computationally
expensive. Decades of research [[1}12,|3]] suggest human inductive reasoning approximates probabilistic
Bayesian belief updates, but we still cannot truly model what people seem to do: Efficient online
induction and inquiry over flexible open-ended hypothesis spaces. This is the challenge we take on.

We start with the Bayesian cognitive modeling paradigm, which imposes probabilistic norms for
calculating how credible a belief should be, but as a paradigm, does not say what people can
believe in the first place—how they can efficiently reason about an endlessly open-ended range of
concepts. Prior models of inductive reasoning [4} 5] further posit an inner Language of Thought,
whether formal logic, symbolic schemas or Bayes net templates, or probabilistic programs, which
formalize and delineate what hypotheses are representable, and therefore learnable. The literature on
intuitive theories and cognitive development has also proposed natural language as a representation
of hypotheses [6, 7} 8], but this has never been made formal.

Here we find that human behavior across a range of induction and inquiry setups is best explained by
sequential probabilistic reasoning over mental programs, which we treat as a mix of natural language
and computer source code (fig. [I). Although the idea of an inner Language of Thought is an old one,
its past computational instantiations assumed rigid logical forms that are less malleable than natural
language, and less practical than actual programming languages.

Why represent knowledge as a mix of natural language and source code? Language and code are
generic representations for communicating and formalizing human knowledge, but only recently
have they become tractable targets of inference, owing primarily to Large Language Models (LLMs).
Our models equip LLMs with sequential probabilistic reasoning. The resulting models reproduce
sequential phenomena such as garden-pathing and anchoring; capture gradations of uncertainty; and
scale to more complex concepts, because of the powerful combination of the expressivity of language
and the top-down feedback of code. Furthermore, we show how these models can perform human-like
active inquiry, closing the sequential learning loop which alternates between induction and inquiry.
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Figure 1: a) - d) show sequential inference problems that we study in this work and illustrate how, in
each problem, Bayesian beliefs may change upon seeing new observations over time.

Speculatively, our model suggests mental representations that lie on a continuum between logic and
language, and shows how this representation is compatible with Bayesian reasoning.

2 Computational Model

Humans encounter evidence sequentially over time: One instance of a new category is seen first,
another second, etc. Limited data is inherently ambiguous, so we model humans as mentally
representing multiple competing hypotheses, maintaining those that both fit the data and admit simple
natural-language description. Upon receiving new evidence, humans update their beliefs: They
inductively reason about whether new data forces new conclusions, or eliminates old hypotheses.
Therefore our model compares the latest hypotheses to the data, and stochastically revises them
to better fit the data. Representing hypothesis in language and code, and then revising hypotheses
using large language models, allows efficient open-ended reasoning. Modeling multiple competing
hypotheses captures the intuition that people can think of several different explanations, which allows
rational inquiry by asking questions that optimally split the competing hypotheses.

Formally, given a sequence of 7' examples ej.7, our model hypothesizes mental programs h. Each
mental program has two pieces: (1) a natural language description and (2) a Python implementation.
Mixing language and code allows freely generating ideas in natural language, but forces formalizing
hypothesis into executable form. We define priors p(h) that favor short natural language descriptions,
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Figure 2: a) - c¢) show three types of inference methods: traditional Bayesian, vanilla LLM, and
LLM-based Bayesian (ours). LLM-based Bayesian inference in language/code hypothesis space is
the only method that is tractable while maintaining consistent beliefs and optimal experiments.

and likelihoods p(e;|h) that favor program executions that match the evidence. The language prior
and code likelihood together define a posterior p(hle1.r), which evolves over time:

p(hlerr) o< pler|h)p(hlerr—1) o p(h) T pled/h) ¢))

t<T

The above posterior is intractable because infinitely many hypotheses could explain the data. Instead,
humans could only plausibly consider a small finite set of hypotheses.

How should we generate this small pool of possible hypotheses, given the vast hypothesis space
of natural language and code? While we can compare competing hypotheses given the prior and
likelihood (eq. (T)), we still need a heuristic proposal mechanism to know which hypotheses to
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consider in the first place. LLMs are a natural choice. From a cognitive perspective, they are a
fast bottom-up mechanism for suggesting different hypotheses, built through associative learning
mechanisms that encode certain human priors by pretraining on human language. From an engineering
standpoint, they serve as a data-driven proposal distribution over hypotheses h that might explain
e1.+, and where we can down-weight samples that do not fit the data by reweighing to target p(hles.¢),
mitigating LLM hallucinations.

To evolve beliefs with each new piece of evidence, we use LLM-augmented Sequential Monte

Carlo [9}[10], specifically LLM-SMC-S [11]] (ﬁg.. This maintains K particles {h@}zK:l representing
candidate hypotheses after observing ¢ examples, e;.;. A prompt implements a bottom-up proposal

o K . . N
distribution ¢ (ht+1 let:ta1, {h%}izl) which generates a new set of particles {h{,,}.” .. given the

new evidence. Departing from standard SMC, we propose new particles given a global view of the
previous posterior, which means all previous hypotheses are available in-context (Methods).

A bottom-up associative learner is not the only way of proposing hypotheses, but we think it is close
to what happens in humans when drawing fast inferences from sparse data. Other related cognitive
models either curtail the hypothesis space apriori—restricting what can be learned in principle—or
demand exorbitant sampling budgets in an effort to cover the vast space of mental programs 12} [13]].
But an LLM is not the whole story: Top-down probabilistic reasoning dampens the unpredictability
of the language model; allows thinking longer by proposing more hypotheses; and supports a broader
range of probabilistic queries, such as asking questions and doing experiments to resolve uncertainty
by maximizing information gain.

3 Mental Algorithms from Sequential Observations

3.1 List functions

If humans can infer mental programs, then they should be able to learn new algorithms from examples.
Many behavioral and modeling studies investigate this [[14}[15,16L[17,[18]], but recently Rule et al. [19]
substantially increased the behavioral and modeling challenge by testing human learners on 250
different algorithms, each learnable from a sequence of examples (fig. [T} algorithms 1-100 are easier
to model, 101-250 are more challenging). This benchmark poses a modeling challenge because of
the massive combinatorial search space of possible algorithms. To address this search problem, Rule
et al. [19] design a custom programming language equipped with high-level search moves (termed

New observation:
Input: [2, 6, 9]

Output: 9
Falsified by Revising J
b ti
new o. s?rva ion ’h\x{aroﬂt”}fses Weigh each Resample to
O Sample hypothesis - “, particle according make the
E\:{/ _revisions from LLM ¥ to evidence weights uniform
h;hyh; hihyhsh hg h;h, hs hshg hyh3h,
Posterior belief Posterior belief
before seeing hy) = the first number after seeing
new observation h2) = the highest number new observation

B3 = the first number plus 7

h4) = the first odd number (revised from hj)

hs) = the first even number (revised from hj)

Figure 3: An illustration of how Sequential Monte Carlo methods change posterior belief upon
receiving new observation. Sequential Monte Carlo method tracks a small number of hypotheses
(called particles) represented above by circles. After each experiment, some particles are revised
in light of the new observation, with the help of LLM. Then, the particles are reweighed according
to how well each explains the observations we have seen so far. Resampling adjusts the weights of
particles to be uniform by pruning low-probability hypotheses and multiplying high-probability ones.
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Figure 4: a). An example list function task: the participant is iteratively given examples and asked
for predictions. This task — 150 — is visualized in panels b). (labeled) and c). (black outline). b).
Posterior predictive curves for 4 models, and average accuracy for participants, on 8 randomly drawn
tasks, across the 10 examples. Note that accuracy tends to increase as participants / models are shown
more examples. ¢). Scatter plot of model accuracy and human accuracy for the 4 models in panel b).
Model mean accuracy on the List Functions domain across examples versus mean human accuracy
across participants and examples (s = 5 except for HL 500k, where s = 500, 000).

HL), searching through up to 500k programs for each new input-output to find programs that explain
the data. Plausibly, humans consider far fewer hypotheses— yet still learn these algorithms.

We test our model’s ability to learn these algorithms while proposing (searching) far fewer hypotheses,
and also test our model’s ability to capture trial-by-trial dynamics of sequential inference. To study
our ability to predict which algorithms are easier or harder to learn, Figure @t plots human vs. model
accuracy on 250 algorithms averaged across trials. At a search budget of just 5 proposals, our model
fits the human data far better than HL given 500k proposals. This suggests a bottom-up proposal
process could explain the search efficiency of human learners: With a neural proposal distribution,
just a few samples suffice to predict average human accuracy. Modeling the sequence of examples
proves important: Switching from Sequential Monte Carlo to Importance Sampling—which processes
all examples at once—degrades model fit (fig. Ak, Importance Sampling). Figure @ illustrates trial-
by-trial accuracy for 8 randomly selected algorithms. Our model does not capture every detail of
these learning curves, but for 70/100 algorithms, it matches these curves best (under MSE), with
the remaining 30/100 roughly equally split between a best fit to HL, and a best fit to Importance
Sampling.

The dataset of Rule et al. served as a significant challenge to both LLMs and conventional symbolic
methods. Humans can learn these algorithms, but it took years of engineering to build a similarly
performant model. Even then, prior work [19] confined itself to the 100 easier algorithms, and
expended search effort far exceeding what humans plausibly perform. LLMs alone neither solve
these problems nor fit human data. But LLM-guided sequential Bayesian inference suffices to solve
this benchmark at human level, and reproduce basic human behavioral features.

3.2 Number concepts

Many human concepts are categories, rather than algorithmic functions, and are learned from only
positive examples, such telling a child that an animal is ‘cat’, but not saying it isn’t a giraffe. Here we
study sequential learning of number categories, such as ‘numbers ending in 3° or ‘square numbers
bigger than 20’, following [20, 21]]. When learning such concepts from small amounts of sequential
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Figure 5: a). Demonstration of the number game task. Participants are sequentially shown a new
example of an unknown number concept and asked to predict what other numbers 1-100 are in the
concept (gray). b). Human data, our model predictions, and predictions from Thaker et al. [20] in 3
conditions. The early, distractor condition is omitted for clarity (results are nearly indistinguishable
from the early, no distractor case).

data, humans show ordering effects such as anchoring or garden-pathing: A category that seems
likely in earlier examples will dominate later inferences, even if invalidated by later data. For example,
given the positive examples 30, 31, 33, humans reliably infer a category such as numbers around 30,
even when later data suggests multiples of 3, such as 24, 21, 36, 39. Ordering the distractor 3/ late in
the sequence, such as 30, 33, 24, 21, 36, 31, 39, has the opposite effect: Humans anchor to multiples
of three, and discount the distractor.

Thaker et al. [20] study human number-category anchoring, which we computationally model
(Figure[3). Our model’s sequential inference successfuly reproduces the ordering effects seem in
humans, and surprisingly, fits the human data better at smaller compute budget than the custom
model in Thaker et al. Our model also reproduces attentional effects: When placed under greater
cognitive load (a secondary distractor task), humans anchor more strongly. Modeling cognitive load
by reducing our sampling budget replicates this effect (Supplement).

4 Resolving Uncertainty by Doing Experiments and Asking Questions

Humans can procure new data to aid learning by asking questions or trying out experiments in the
real world, such as eating a new kind of berry to tell if it makes us sick. But it costs something to
acquire new learning data, so humans need to decide whether to incur the cost of doing an experiment
or asking a question to resolve uncertainty. Building on our sequential inference setup, we treat
humans as considering different experiments £, and pick the experiment which maximizes expected
information gain, under their particle-based approximate probabilistic beliefs:

¢ =argmax E  [Dxu(p(hleis,e)|p(hlerr))] 2
3 p(el€,e1:t)
Exactly computing expected information gain is intractable. We make a particle-based approximation
by treating the hypothesis space as the set of unique current particles, enabling tractable approximation
of the requisite distributions.

We first investigate this model by comparing its behavior to humans playing the game Zendo,
which resembles classic ‘blicket’ studies in developmental psychology [22, 23] 24]], but adds active
experimentation. In Zendo, players infer a hidden binary category by building constructions from
colored shapes, and then receiving feedback on if their construction belongs to the hidden category
(Figure [6). Each construction is an experiment . We take human data from [23], where after
7 rounds of experimentation, participants make 8 predictions on holdout test constructions. Our
model mimics a human participant by alternating between experimentation and inference, and finally
testing on the the same holdout constructions. The resulting model captures fine-grained structure in
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Figure 6: (a) Zendo gameplay (b) Human accuracy on examples that do not belong to the category
(not rule following, ‘Not RF’) is higher than accuracy on in-category examples (rule following, ‘RF’).
Our model reproduces this phenomenon, while an LLM on its own does not. (c) Human-model R?
has a U-shaped relationship to compute budget: Humans are boundedly rational, and increasing
compute eventually degrades model fit. (d) The log likelihood of the human data is highest under our
model, and surprisingly surpasses the fit of a custom model designed for this dataset [25], despite the
fact that we do not hand-engineer a dataset-specific hypothesis space.

human error patterns (fig. [6p). As before, we get insight into boundedly-rational human behavior by
modulating the inference-time budget (fig. [6f), and despite minimal domain-specific engineering,
our model fits the human data better than a custom Bayesian learner designed specifically for this
dataset (fig.[6d). We find therefore that the LLM-guided Bayesian learner is surprisingly versatile:
Rational probabilistic reasoning tied to LLM backends support both concept learning and active
experimentation, giving an induction-inquiry cycle that predicts human behavior better than LLMs or
Bayes on their own.

Beyond Code: Asking Questions. In social contexts, the analog of an experiment is question-
asking. Because our model operates over natural language, we can also use it to generate informative
questions. We study this in a web shopping task where the model serves as a shopping assistant, and
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asks natural-language questions that optimize information gain (eq. (2)). As a proof-of-concept, we
assume a finite hypothesis space of products a customer can purchase, and perform exact Bayesian
belief updates. An experiment £ is a natural language question, an example e is a question-answer
pair, and hypotheses h are different products (such as different brands of shampoo).

The agreement of a product i and a question-answer pair e is not generally expressible as a Python
program. Therefore the likelihood p(e|h) simply queries a language model, rather than generate code.
Conceptually our argument is that neither natural language nor high-level programming languages
truly capture the biases and expressiveness of human mental programs, so we should not expect that
every problem is best solved by a hybrid of language and code.

Figure|/|compares our model with basic LLM prompts and also ReAct, which prompts an LLM to
think before it acts. Our model chooses more informative questions, as defined by information gain,
giving a higher chance of discovering the customer’s preferred product. Although we mainly focus
on modeling human data, we believe that these methods can also impact how Al systems are built.

5 Discussion

How people learn new categories, laws, and abstract concepts from the sparse streaming data of
experience is a difficult open question. Candidate computational models must be simultaneously
flexible and efficient—which are generally in tension. To make progress on that question, our models
make mechanistic commitments about the underlying mental representation—code and language—
and the underlying mental algorithms, which use neurally-guided sequential inference for tractable
reasoning over open-ended hypothesis spaces. Across a range of inductive reasoning problems, the
resulting model fits human data better than specialized models designed for each individual behavioral
experiment, and further allow induction to alternate with inquiry, explaining how online learning
and acting can cooperate together. Our results suggest a language of thought that lies between logic
and language, and also suggest that we are not far from a unified computational account of human
induction and inquiry that could explain how humans think flexibly across the endless range of
situations in which these cognitive faculties can be brought to bear.

Cognitive Implications. Our models assume a solution space whose hypotheses are at least
definable in clear English language. Yet many human concepts are famously tricky to formalize,
such as the meaning of ‘chair’ [? ] or even ‘dog walking’ [26]. It remains open whether symbolic
hypotheses are the right representation for such categories, but our view is that a symbolic language of
thought remains the best account of inductive reasoning from small data. We use a specific language
of thought termed mental programs, which combines natural language and code. Code can represent
what would be hard to precisely express language, such as detailed physical properties, the shape of
a hand-drawn character [27], or the precise rules of a board game. Language can represent fuzzier,
higher-level propositions. Current Al heavily uses language as a knowledge representation, and
achieves unprecedented coverage as a result: LLMs can converse about virtually every human topic,
even if they do not always make sense. Classic Bayesian models using symbolic programs have
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succeeded at modeling humans within narrow domains by tailoring the representation to the problem
domain [28} 129, (30} 25} 131}, 132} [33} 34]]. Our work suggests that Bayesian priors should operate over
in language-like representations, but that the grounding between hypothesis and data—the likelihood
function—is a better fit for programs. Potentially, a future unified representation could serve both
roles, which we view as an important open direction.

Bayesian cognitive models are known both for their predictive power and their computational
intractability, and have been criticized as lacking an account of their biological implementation.
Our work is not alone in trying to address these issues with Bayesian models: Metalearning offers
another tractable neural instantiation of Bayes, where a neural network approximates the Bayesian
predictive distribution [35, [36} [37] in a single forward pass, either via in-context learning or via
MAML-style [38] weight updates. Unlike our work, such models do not reason over latent discrete
representations. This is complementary to our models: We construct explicit verbalizable hypotheses,
do not require training new neural networks, and can trade more inference-time compute for better
predictions. At the same time, relative to metalearning, our approach has important limitations: It
cannot learn what pretrained models do not already understand, and is unlikely to be a good account
of fast, non-verbalizable inference. Roughly, we think of our models as a System 2 way of using
neural networks for approximate reasoning, while metalearning is best thought of as a fast System 1
process. Humans likely use both strategies when thinking probabilistically.

Neural networks and Bayes. LLM:s are probabilistic models trained on masses of human data—
yet, in isolation, they do not reproduce human behavior in the tasks considered here. Why is that?
Fundamentally, probabilistic inference requires reasoning about uncertainty. Reasoning requires
expending variable compute, to think longer on harder problems. Handling uncertainty further
constrains the model to the laws of probability. The newest LLMs are increasingly trained to reason
via reinforcement learning (using chain-of-thought [39])), but to date such training focuses on problem-
solving, not probabilistic inference. Chain-of-thought may also not be sufficiently constrained to
ensure sound convergence, unlike the classic Monte Carlo algorithms that we and others build on [[10].
It remains open however whether future LLMs could implicitly learn to mimic the reasoning patterns
of sound inference algorithms.

cut? Engineering Implications. To get to human-level Al, the dominant paradigm today trains
larger models on more data, effectively scaling learning. We consider scaling thinking, but very
differently from large reasoning model such as OpenAI’s O1 [40] and Deepseek’s R1 [41]: Using
principled probabilistic inference, critically in a way that leverages and complements the dominant
scaling route by using LLMs as foundational components. We hope that this work can serve as
a blueprint for combining LLMs with classic probabilistic reasoning methods, whose range of
application is wide-ranging, including program analysis, social dialogue (i.e. pragmatic inference),
forecasting, planning, and physical reasoning, to name a few. Our pilot experiments in question-asking
are one example of this.

AMBITIOUS FORWARD LOOKING CONCLUSION
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A Appendix

A.1 Redundant/Move to methods

sample-matched model accuracy versus human accuracy for the Full model, HL, and Sam-
ple+Weight for a random subset of 40 tasks. Each model uses 5 samples / search steps per example.
Across the 100 tasks, the Full model has the closest fit to human data (measured by mean squared
error (MSE) in the 10 examples), for 70 of 100 tasks, Sample+Weight for 17 of 100 tasks, and HL.
for the remaining 13.

the model average accuracy of the model against the average human accuracy across all 100 algo-
rithms,

ofhas a comprehensive algorithm-learning

We first study algorithmic and numerical concepts (Figure [Tp-b): Learning, from input-outputs,
algorithms on lists of numbers (), and learning, from positive-only examples, a novel number
category, such as numbers from 30-40.

Algorithmic concepts. [19]

In the List Functions domain, the task is to, given a set of input-output examples, induce the underlying
program which maps each input list to its corresponding output list. The learner then must apply this
induced program to a new input for which the output is hidden. One such task from the domain is:

We model the human data using the LLM+SMC model outlined above. We use gpt-4-0613 [? ] as
our proposal distribution g over natural language language hypotheses H. Preliminary experiments
showed that other publicly-accessible LLMs perform substantially worse (TODO: these experiments
were 1 year ago. I should probably re-run w/ more modern (and much cheaper) models). For
our prior, we find that a simple length-prior p(H) I%\ works just as well as a linear prior model

fitted to human data, in contrast to previous work in concept learning.

For our likelihood function, we use a simple likelihood function

10X = HOXD) | 1IXE # H(X))]

P(Xyx [H)= [[ -0 =

1<k<K

3

where 6 is the probability that an example is mislabeled. Note that the likelihood increases monotoni-
cally with the number of correct examples; a hypothesis will always have a higher likelihood if it
can directly explain more of the data than another hypothesis. Initially, we set 6 = ﬁ, and after
proposing all hypotheses, we fit  to human data using k-fold cross-validation, with k£ = 10. Fitting
the likelihood parameters, in this case only #, while running the model is interesting future work that
may improve performance.

We compare our model — Full model — with two baselines. The Hacker-like (HL) model [? ] is a
search algorithm over meta-programs that uses term-rewriting systems to drastically improve search
efficiency over alternative symbolic search algorithms such as Fleet [? ] and Metagol [? ]. The
Sample+Weight baseline removes the sequential aspect of our model, treating each example k as a
separate task.
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