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Abstract
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1 Introduction2

Inductive reasoning is a cornerstone of general intelligence: Learning new concepts from few3

examples, and revising those concepts in light of new evidence. Limited data is inherently ambiguous,4

motivating an inquiry process of asking questions or doing experiments to resolve uncertainty. This5

induction-inquiry cycle unfolds sequentially over time, with new data streaming in, because inquiry6

is an active process of asking questions and getting answers. Modeling human induction and inquiry7

is a longstanding challenge because such models must handle uncertainty, have a flexible hypothesis8

class covering much of what humans can think of, and support efficient online computation. These9

objectives interact: A flexible, open-ended hypothesis class yields more uncertainty, because there are10

now more competing explanations for the evidence. But this causes reasoning to be computationally11

expensive. Decades of research [1, 2, 3] suggest human inductive reasoning approximates probabilistic12

Bayesian belief updates, but we still cannot truly model what people seem to do: Efficient online13

induction and inquiry over flexible open-ended hypothesis spaces. This is the challenge we take on.14

We start with the Bayesian cognitive modeling paradigm, which imposes probabilistic norms for15

calculating how credible a belief should be, but as a paradigm, does not say what people can16

believe in the first place—how they can efficiently reason about an endlessly open-ended range of17

concepts. Prior models of inductive reasoning [4, 5] further posit an inner Language of Thought,18

whether formal logic, symbolic schemas or Bayes net templates, or probabilistic programs, which19

formalize and delineate what hypotheses are representable, and therefore learnable. The literature on20

intuitive theories and cognitive development has also proposed natural language as a representation21

of hypotheses [6, 7, 8], but this has never been made formal.22

Here we find that human behavior across a range of induction and inquiry setups is best explained by23

sequential probabilistic reasoning over mental programs, which we treat as a mix of natural language24

and computer source code (fig. 1). Although the idea of an inner Language of Thought is an old one,25

its past computational instantiations assumed rigid logical forms that are less malleable than natural26

language, and less practical than actual programming languages.27

Why represent knowledge as a mix of natural language and source code? Language and code are28

generic representations for communicating and formalizing human knowledge, but only recently29

have they become tractable targets of inference, owing primarily to Large Language Models (LLMs).30

Our models equip LLMs with sequential probabilistic reasoning. The resulting models reproduce31

sequential phenomena such as garden-pathing and anchoring; capture gradations of uncertainty; and32

scale to more complex concepts, because of the powerful combination of the expressivity of language33

and the top-down feedback of code. Furthermore, we show how these models can perform human-like34

active inquiry, closing the sequential learning loop which alternates between induction and inquiry.35
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output = input[1 : 1+input[0]]

output = [min(input), max(input)] 

output = input[1 : 1+input[0]]

output = unique([item for item in
input if item % 2 == 0])

a)

The customer wants a hair growth
serum oil that contains ginger

The customer wants a hair growth
serum oil that only needs to be

applied once a day

c) I want to buy a hair growth serum oil

I think serum oil with natural ingredients
would be nice!

Any specific features or ingredients you are
looking for?

Machine makes sound when at least
one of them is a yellow object

Machine makes sound when the
majority is a cylinder

Machine makes sound when at least
one of them is a yellow object

Machine makes sound when the
majority is yellow

d)

The concept is numbers around 30

The concept is multiples of 3

The concept is numbers around 30

The concept is multiples of 3, 
and 31

b) Examples of a number concept:
{27, 30, 33}

Examples of a number concept:
{27, 30, 33, 31, 24}

The customer wants a hair growth
serum oil that contains ginger

The customer wants a hair growth
serum oil that is made from

rosemary oil

Figure 1: a) - d) show sequential inference problems that we study in this work and illustrate how, in
each problem, Bayesian beliefs may change upon seeing new observations over time.

Speculatively, our model suggests mental representations that lie on a continuum between logic and36

language, and shows how this representation is compatible with Bayesian reasoning.37

2 Computational Model38

Humans encounter evidence sequentially over time: One instance of a new category is seen first,39

another second, etc. Limited data is inherently ambiguous, so we model humans as mentally40

representing multiple competing hypotheses, maintaining those that both fit the data and admit simple41

natural-language description. Upon receiving new evidence, humans update their beliefs: They42

inductively reason about whether new data forces new conclusions, or eliminates old hypotheses.43

Therefore our model compares the latest hypotheses to the data, and stochastically revises them44

to better fit the data. Representing hypothesis in language and code, and then revising hypotheses45

using large language models, allows efficient open-ended reasoning. Modeling multiple competing46

hypotheses captures the intuition that people can think of several different explanations, which allows47

rational inquiry by asking questions that optimally split the competing hypotheses.48

Formally, given a sequence of T examples e1:T , our model hypothesizes mental programs h. Each49

mental program has two pieces: (1) a natural language description and (2) a Python implementation.50

Mixing language and code allows freely generating ideas in natural language, but forces formalizing51

hypothesis into executable form. We define priors p(h) that favor short natural language descriptions,52
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Hypothesis Data

Intractable Inference

Inconsistent Beliefs

b)

Do you want a product that contains biotin?

Don't most of your products contain biotin?

You're right... they do

To figure out what the customer
want, we should ask ...

LLM

"Do you want a product that contains biotin?"LLM

there is a blue

The machine makes sound when ...

Consistent Beliefs

Suboptimal Experiment

a)

Any specific features or ingredients 
you are looking for?

To figure out what the customer
want, we should ask ...

LLM

q1 - "Do you want a product that deliver fast results?"
q2 - "Any specific features or ingredients you are looking for?"

ExpectedInfoGain(q2 | Product knowledge) 
> ExpectedInfoGain(q1 | Product knowledge)

Optimal Experiment

p("there is a blue" | data) = 0
p("there is a yellow" | data) > 0

c)

LLM

- there is a blue
- there is a yellow

The machine makes sound when ...

Traditional
Bayesian Inference

Vanilla LLM
Inference

LLM-based 
Bayesian Inference

-based Tractable Inference

Language/
Code

Data

LLM

  LLM

next-wordperformLLMs

generation

I want to buy a hair growth serum oil

I want to buy a hair growth serum oil

Figure 2: a) - c) show three types of inference methods: traditional Bayesian, vanilla LLM, and
LLM-based Bayesian (ours). LLM-based Bayesian inference in language/code hypothesis space is
the only method that is tractable while maintaining consistent beliefs and optimal experiments.

and likelihoods p(et|h) that favor program executions that match the evidence. The language prior53

and code likelihood together define a posterior p(h|e1:T ), which evolves over time:54

p(h|e1:T ) ∝ p(eT |h)p(h|e1:T−1) ∝ p(h)
∏
t≤T

p(et|h) (1)

The above posterior is intractable because infinitely many hypotheses could explain the data. Instead,55

humans could only plausibly consider a small finite set of hypotheses.56

How should we generate this small pool of possible hypotheses, given the vast hypothesis space57

of natural language and code? While we can compare competing hypotheses given the prior and58

likelihood (eq. (1)), we still need a heuristic proposal mechanism to know which hypotheses to59
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consider in the first place. LLMs are a natural choice. From a cognitive perspective, they are a60

fast bottom-up mechanism for suggesting different hypotheses, built through associative learning61

mechanisms that encode certain human priors by pretraining on human language. From an engineering62

standpoint, they serve as a data-driven proposal distribution over hypotheses h that might explain63

e1:t, and where we can down-weight samples that do not fit the data by reweighing to target p(h|e1:t),64

mitigating LLM hallucinations.65

To evolve beliefs with each new piece of evidence, we use LLM-augmented Sequential Monte66

Carlo [9, 10], specifically LLM-SMC-S [11] (fig. 3). This maintains K particles
{
hi
t

}K

i=1
representing67

candidate hypotheses after observing t examples, e1:t. A prompt implements a bottom-up proposal68

distribution q
(
ht+1|e1:t+1,

{
hi
t

}K

i=1

)
which generates a new set of particles

{
hi
t+1

}K

i=1
, given the69

new evidence. Departing from standard SMC, we propose new particles given a global view of the70

previous posterior, which means all previous hypotheses are available in-context (Methods).71

A bottom-up associative learner is not the only way of proposing hypotheses, but we think it is close72

to what happens in humans when drawing fast inferences from sparse data. Other related cognitive73

models either curtail the hypothesis space apriori—restricting what can be learned in principle—or74

demand exorbitant sampling budgets in an effort to cover the vast space of mental programs [12, 13].75

But an LLM is not the whole story: Top-down probabilistic reasoning dampens the unpredictability76

of the language model; allows thinking longer by proposing more hypotheses; and supports a broader77

range of probabilistic queries, such as asking questions and doing experiments to resolve uncertainty78

by maximizing information gain.79

3 Mental Algorithms from Sequential Observations80

3.1 List functions81

If humans can infer mental programs, then they should be able to learn new algorithms from examples.82

Many behavioral and modeling studies investigate this [14, 15, 16, 17, 18], but recently Rule et al. [19]83

substantially increased the behavioral and modeling challenge by testing human learners on 25084

different algorithms, each learnable from a sequence of examples (fig. 1; algorithms 1-100 are easier85

to model, 101-250 are more challenging). This benchmark poses a modeling challenge because of86

the massive combinatorial search space of possible algorithms. To address this search problem, Rule87

et al. [19] design a custom programming language equipped with high-level search moves (termed88

Weigh each 
particle according 

to evidence

New observation:
Input: [2, 6, 9]
Output: 9

Resample to 
make the 

weights uniform

Revising 
hypotheses

h1
Posterior belief 
before seeing 
new observation

Falsified by 
new observation

= the first number
= the highest number

= the first number plus 7
= the first odd number (revised from h1)

= the first even number (revised from h1)

h2

h1

h3

h4

h5

h2h3h4h5

Sample hypothesis
revisions from LLM

h1h2h3 h1h2 h3 h4h5
Posterior belief 
after seeing 

new observation

h2h3h4

Figure 3: An illustration of how Sequential Monte Carlo methods change posterior belief upon
receiving new observation. Sequential Monte Carlo method tracks a small number of hypotheses
(called particles) represented above by circles. After each experiment, some particles are revised
in light of the new observation, with the help of LLM. Then, the particles are reweighed according
to how well each explains the observations we have seen so far. Resampling adjusts the weights of
particles to be uniform by pruning low-probability hypotheses and multiplying high-probability ones.
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Figure 4: a). An example list function task: the participant is iteratively given examples and asked
for predictions. This task – 150 – is visualized in panels b). (labeled) and c). (black outline). b).
Posterior predictive curves for 4 models, and average accuracy for participants, on 8 randomly drawn
tasks, across the 10 examples. Note that accuracy tends to increase as participants / models are shown
more examples. c). Scatter plot of model accuracy and human accuracy for the 4 models in panel b).
Model mean accuracy on the List Functions domain across examples versus mean human accuracy
across participants and examples (s = 5 except for HL 500k, where s = 500, 000).

HL), searching through up to 500k programs for each new input-output to find programs that explain89

the data. Plausibly, humans consider far fewer hypotheses— yet still learn these algorithms.90

We test our model’s ability to learn these algorithms while proposing (searching) far fewer hypotheses,91

and also test our model’s ability to capture trial-by-trial dynamics of sequential inference. To study92

our ability to predict which algorithms are easier or harder to learn, Figure 4c plots human vs. model93

accuracy on 250 algorithms averaged across trials. At a search budget of just 5 proposals, our model94

fits the human data far better than HL given 500k proposals. This suggests a bottom-up proposal95

process could explain the search efficiency of human learners: With a neural proposal distribution,96

just a few samples suffice to predict average human accuracy. Modeling the sequence of examples97

proves important: Switching from Sequential Monte Carlo to Importance Sampling—which processes98

all examples at once—degrades model fit (fig. 4c, Importance Sampling). Figure 4b illustrates trial-99

by-trial accuracy for 8 randomly selected algorithms. Our model does not capture every detail of100

these learning curves, but for 70/100 algorithms, it matches these curves best (under MSE), with101

the remaining 30/100 roughly equally split between a best fit to HL, and a best fit to Importance102

Sampling.103

The dataset of Rule et al. served as a significant challenge to both LLMs and conventional symbolic104

methods. Humans can learn these algorithms, but it took years of engineering to build a similarly105

performant model. Even then, prior work [19] confined itself to the 100 easier algorithms, and106

expended search effort far exceeding what humans plausibly perform. LLMs alone neither solve107

these problems nor fit human data. But LLM-guided sequential Bayesian inference suffices to solve108

this benchmark at human level, and reproduce basic human behavioral features.109

3.2 Number concepts110

Many human concepts are categories, rather than algorithmic functions, and are learned from only111

positive examples, such telling a child that an animal is ‘cat’, but not saying it isn’t a giraffe. Here we112

study sequential learning of number categories, such as ‘numbers ending in 3’ or ‘square numbers113

bigger than 20’, following [20, 21]. When learning such concepts from small amounts of sequential114
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a). b).

Figure 5: a). Demonstration of the number game task. Participants are sequentially shown a new
example of an unknown number concept and asked to predict what other numbers 1-100 are in the
concept (gray). b). Human data, our model predictions, and predictions from Thaker et al. [20] in 3
conditions. The early, distractor condition is omitted for clarity (results are nearly indistinguishable
from the early, no distractor case).

data, humans show ordering effects such as anchoring or garden-pathing: A category that seems115

likely in earlier examples will dominate later inferences, even if invalidated by later data. For example,116

given the positive examples 30, 31, 33, humans reliably infer a category such as numbers around 30,117

even when later data suggests multiples of 3, such as 24, 21, 36, 39. Ordering the distractor 31 late in118

the sequence, such as 30, 33, 24, 21, 36, 31, 39, has the opposite effect: Humans anchor to multiples119

of three, and discount the distractor.120

Thaker et al. [20] study human number-category anchoring, which we computationally model121

(Figure 5). Our model’s sequential inference successfuly reproduces the ordering effects seem in122

humans, and surprisingly, fits the human data better at smaller compute budget than the custom123

model in Thaker et al. Our model also reproduces attentional effects: When placed under greater124

cognitive load (a secondary distractor task), humans anchor more strongly. Modeling cognitive load125

by reducing our sampling budget replicates this effect (Supplement).126

4 Resolving Uncertainty by Doing Experiments and Asking Questions127

Humans can procure new data to aid learning by asking questions or trying out experiments in the128

real world, such as eating a new kind of berry to tell if it makes us sick. But it costs something to129

acquire new learning data, so humans need to decide whether to incur the cost of doing an experiment130

or asking a question to resolve uncertainty. Building on our sequential inference setup, we treat131

humans as considering different experiments ξ, and pick the experiment which maximizes expected132

information gain, under their particle-based approximate probabilistic beliefs:133

ξ∗ = argmax
ξ

E
p(e|ξ,e1:t)

[DKL(p(h|e1:t, e)∥p(h|e1:t))] (2)

Exactly computing expected information gain is intractable. We make a particle-based approximation134

by treating the hypothesis space as the set of unique current particles, enabling tractable approximation135

of the requisite distributions.136

We first investigate this model by comparing its behavior to humans playing the game Zendo,137

which resembles classic ‘blicket’ studies in developmental psychology [22, 23, 24], but adds active138

experimentation. In Zendo, players infer a hidden binary category by building constructions from139

colored shapes, and then receiving feedback on if their construction belongs to the hidden category140

(Figure 6a). Each construction is an experiment ξ. We take human data from [25], where after141

7 rounds of experimentation, participants make 8 predictions on holdout test constructions. Our142

model mimics a human participant by alternating between experimentation and inference, and finally143

testing on the the same holdout constructions. The resulting model captures fine-grained structure in144
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(a)

- There is more than one blue?

Hypotheses
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Experiments

- The number of blocks is even?

- All blocks are upright?

(b)
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Number of LLM Calls per Iteration

0.3
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0.5

0.6

R
² S

co
re

R² Score between Model and Human Predictions
Our model

(d)

Method LogL↑
Bramley et al. 2018 [25] −1539

Important Sampling + Refinement −3499.76
Importance Sampling −1660.90

LLM-SMC-S −1478.82

Figure 6: (a) Zendo gameplay (b) Human accuracy on examples that do not belong to the category
(not rule following, ‘Not RF’) is higher than accuracy on in-category examples (rule following, ‘RF’).
Our model reproduces this phenomenon, while an LLM on its own does not. (c) Human-model R2

has a U-shaped relationship to compute budget: Humans are boundedly rational, and increasing
compute eventually degrades model fit. (d) The log likelihood of the human data is highest under our
model, and surprisingly surpasses the fit of a custom model designed for this dataset [25], despite the
fact that we do not hand-engineer a dataset-specific hypothesis space.

human error patterns (fig. 6b). As before, we get insight into boundedly-rational human behavior by145

modulating the inference-time budget (fig. 6c), and despite minimal domain-specific engineering,146

our model fits the human data better than a custom Bayesian learner designed specifically for this147

dataset (fig. 6d). We find therefore that the LLM-guided Bayesian learner is surprisingly versatile:148

Rational probabilistic reasoning tied to LLM backends support both concept learning and active149

experimentation, giving an induction-inquiry cycle that predicts human behavior better than LLMs or150

Bayes on their own.151

Beyond Code: Asking Questions. In social contexts, the analog of an experiment is question-152

asking. Because our model operates over natural language, we can also use it to generate informative153

questions. We study this in a web shopping task where the model serves as a shopping assistant, and154
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Figure 7: (Left) Average expected binary reward at increasing number of number of questions. (Right)
Average information gain at each question.

asks natural-language questions that optimize information gain (eq. (2)). As a proof-of-concept, we155

assume a finite hypothesis space of products a customer can purchase, and perform exact Bayesian156

belief updates. An experiment ξ is a natural language question, an example e is a question-answer157

pair, and hypotheses h are different products (such as different brands of shampoo).158

The agreement of a product h and a question-answer pair e is not generally expressible as a Python159

program. Therefore the likelihood p(e|h) simply queries a language model, rather than generate code.160

Conceptually our argument is that neither natural language nor high-level programming languages161

truly capture the biases and expressiveness of human mental programs, so we should not expect that162

every problem is best solved by a hybrid of language and code.163

Figure 7 compares our model with basic LLM prompts and also ReAct, which prompts an LLM to164

think before it acts. Our model chooses more informative questions, as defined by information gain,165

giving a higher chance of discovering the customer’s preferred product. Although we mainly focus166

on modeling human data, we believe that these methods can also impact how AI systems are built.167

5 Discussion168

How people learn new categories, laws, and abstract concepts from the sparse streaming data of169

experience is a difficult open question. Candidate computational models must be simultaneously170

flexible and efficient—which are generally in tension. To make progress on that question, our models171

make mechanistic commitments about the underlying mental representation—code and language—172

and the underlying mental algorithms, which use neurally-guided sequential inference for tractable173

reasoning over open-ended hypothesis spaces. Across a range of inductive reasoning problems, the174

resulting model fits human data better than specialized models designed for each individual behavioral175

experiment, and further allow induction to alternate with inquiry, explaining how online learning176

and acting can cooperate together. Our results suggest a language of thought that lies between logic177

and language, and also suggest that we are not far from a unified computational account of human178

induction and inquiry that could explain how humans think flexibly across the endless range of179

situations in which these cognitive faculties can be brought to bear.180

Cognitive Implications. Our models assume a solution space whose hypotheses are at least181

definable in clear English language. Yet many human concepts are famously tricky to formalize,182

such as the meaning of ‘chair’ [? ] or even ‘dog walking’ [26]. It remains open whether symbolic183

hypotheses are the right representation for such categories, but our view is that a symbolic language of184

thought remains the best account of inductive reasoning from small data. We use a specific language185

of thought termed mental programs, which combines natural language and code. Code can represent186

what would be hard to precisely express language, such as detailed physical properties, the shape of187

a hand-drawn character [27], or the precise rules of a board game. Language can represent fuzzier,188

higher-level propositions. Current AI heavily uses language as a knowledge representation, and189

achieves unprecedented coverage as a result: LLMs can converse about virtually every human topic,190

even if they do not always make sense. Classic Bayesian models using symbolic programs have191
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succeeded at modeling humans within narrow domains by tailoring the representation to the problem192

domain [28, 29, 30, 25, 31, 32, 33, 34]. Our work suggests that Bayesian priors should operate over193

in language-like representations, but that the grounding between hypothesis and data—the likelihood194

function—is a better fit for programs. Potentially, a future unified representation could serve both195

roles, which we view as an important open direction.196

Bayesian cognitive models are known both for their predictive power and their computational197

intractability, and have been criticized as lacking an account of their biological implementation.198

Our work is not alone in trying to address these issues with Bayesian models: Metalearning offers199

another tractable neural instantiation of Bayes, where a neural network approximates the Bayesian200

predictive distribution [35, 36, 37] in a single forward pass, either via in-context learning or via201

MAML-style [38] weight updates. Unlike our work, such models do not reason over latent discrete202

representations. This is complementary to our models: We construct explicit verbalizable hypotheses,203

do not require training new neural networks, and can trade more inference-time compute for better204

predictions. At the same time, relative to metalearning, our approach has important limitations: It205

cannot learn what pretrained models do not already understand, and is unlikely to be a good account206

of fast, non-verbalizable inference. Roughly, we think of our models as a System 2 way of using207

neural networks for approximate reasoning, while metalearning is best thought of as a fast System 1208

process. Humans likely use both strategies when thinking probabilistically.209

Neural networks and Bayes. LLMs are probabilistic models trained on masses of human data—210

yet, in isolation, they do not reproduce human behavior in the tasks considered here. Why is that?211

Fundamentally, probabilistic inference requires reasoning about uncertainty. Reasoning requires212

expending variable compute, to think longer on harder problems. Handling uncertainty further213

constrains the model to the laws of probability. The newest LLMs are increasingly trained to reason214

via reinforcement learning (using chain-of-thought [39]), but to date such training focuses on problem-215

solving, not probabilistic inference. Chain-of-thought may also not be sufficiently constrained to216

ensure sound convergence, unlike the classic Monte Carlo algorithms that we and others build on [10].217

It remains open however whether future LLMs could implicitly learn to mimic the reasoning patterns218

of sound inference algorithms.219

cut? Engineering Implications. To get to human-level AI, the dominant paradigm today trains220

larger models on more data, effectively scaling learning. We consider scaling thinking, but very221

differently from large reasoning model such as OpenAI’s O1 [40] and Deepseek’s R1 [41]: Using222

principled probabilistic inference, critically in a way that leverages and complements the dominant223

scaling route by using LLMs as foundational components. We hope that this work can serve as224

a blueprint for combining LLMs with classic probabilistic reasoning methods, whose range of225

application is wide-ranging, including program analysis, social dialogue (i.e. pragmatic inference),226

forecasting, planning, and physical reasoning, to name a few. Our pilot experiments in question-asking227

are one example of this.228

AMBITIOUS FORWARD LOOKING CONCLUSION229
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A Appendix347

A.1 Redundant/Move to methods348

sample-matched model accuracy versus human accuracy for the Full model, HL, and Sam-349

ple+Weight for a random subset of 40 tasks. Each model uses 5 samples / search steps per example.350

Across the 100 tasks, the Full model has the closest fit to human data (measured by mean squared351

error (MSE) in the 10 examples), for 70 of 100 tasks, Sample+Weight for 17 of 100 tasks, and HL352

for the remaining 13.353

the model average accuracy of the model against the average human accuracy across all 100 algo-354

rithms,355

ofhas a comprehensive algorithm-learning356

We first study algorithmic and numerical concepts (Figure 1a-b): Learning, from input-outputs,357

algorithms on lists of numbers (), and learning, from positive-only examples, a novel number358

category, such as numbers from 30-40.359

Algorithmic concepts. [19]360

In the List Functions domain, the task is to, given a set of input-output examples, induce the underlying361

program which maps each input list to its corresponding output list. The learner then must apply this362

induced program to a new input for which the output is hidden. One such task from the domain is:363

We model the human data using the LLM+SMC model outlined above. We use gpt-4-0613 [? ] as364

our proposal distribution q over natural language language hypotheses H . Preliminary experiments365

showed that other publicly-accessible LLMs perform substantially worse (TODO: these experiments366

were 1 year ago. I should probably re-run w/ more modern (and much cheaper) models). For367

our prior, we find that a simple length-prior p(H) ∝ 1
|H| works just as well as a linear prior model368

fitted to human data, in contrast to previous work in concept learning.369

For our likelihood function, we use a simple likelihood function370

P (X1:K | H) =
∏

1≤k≤K

(1− θ)
1[Xo

k = H(Xi
k)]

K
+ θ

1[Xo
k ̸= H(Xi

k)]

K
(3)

where θ is the probability that an example is mislabeled. Note that the likelihood increases monotoni-371

cally with the number of correct examples; a hypothesis will always have a higher likelihood if it372

can directly explain more of the data than another hypothesis. Initially, we set θ = 1
100 , and after373

proposing all hypotheses, we fit θ to human data using k-fold cross-validation, with k = 10. Fitting374

the likelihood parameters, in this case only θ, while running the model is interesting future work that375

may improve performance.376

We compare our model – Full model – with two baselines. The Hacker-like (HL) model [? ] is a377

search algorithm over meta-programs that uses term-rewriting systems to drastically improve search378

efficiency over alternative symbolic search algorithms such as Fleet [? ] and Metagol [? ]. The379

Sample+Weight baseline removes the sequential aspect of our model, treating each example k as a380

separate task.381
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