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Abstract

We apply a procedure that explains the com-
positional role of individual neurons in deep
neural networks to multiple new domains. First,
we apply the procedure to a multi-modal neural
network. We analyze whether the trends found
in single modality neural networks are the same
as the trends in the dual modality neural net-
work on the Natural Language Inference task.
We modify the procedure to take into account
the semantic similarity of words when encod-
ing concepts, and analyze how this difference
in encoding changes how well we can explain
the role of individual neurons.

1 Introduction

Despite the large successes of deep neural net-
works (DNN5s) in computer vision and natural lan-
guage processing (NLP), they still largely operate
as black-boxes. By analyzing the role of individ-
ual neurons in these models, we can better under-
stand DNNs, increase trust in DNNs’ decisions,
and assist DNNs in making ethical decisions (Lip-
ton, 2016). There is extensive work to explain the
role of specific neurons in language models (Dalvi
et al., 2018; Mu and Andreas, 2020) and in image
classification/generation tasks (Zeiler and Fergus,
2013; Zhou et al., 2017, 2015). However, to our
knowledge, there has not been any work to explore
the role of individual neurons in multi-modal net-
works that connect text and images. We investigate
neurons in the Contrastive Language—Image Pre-
training model (CLIP) (Radford et al., 2021), a
model that can encode and compare both text and
images. We answer whether the model’s unique
learning objective to link images and text causes
its neuronal representations to largely differ from
other language models. More specifically, we ex-
tend the techniques of (Mu and Andreas, 2020) to
CLIP by fine-tuning CLIP’s text embedding model
on the Natural Language Inference (NLI) task and
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comparing individual neurons’ alignments with
concepts to the alignments found in the original
paper. We also find that encoding the semantic
meaning of words in that word’s concept changes
the relationship between neuron explainability and
firing accuracy.

2 Related Work

2.1 Explaining Role of Neurons

A lot of preexisting work explains how individual
neurons represent linguistic concepts in language
models (Dalvi et al., 2018; Durrani et al., 2020;
Karpathy et al., 2015; Mu and Andreas, 2020). In
(Dalvi et al., 2018), the authors present two tech-
niques for analyzing the role of individual neurons:
Linguistic Correlation Analysis which is a super-
vised method for finding the most important neuron
for a given extrinsic task, and Cross-model Correla-
tion Analysis which is an unsupervised method for
finding the most important neurons for the model
itself. However, the usefulness of these techniques
is limited because the techniques rely on manual
inspection of the outputs of the analyses.

One difficulty in automating the explanation of
concepts represented by neurons is determining
what concepts to search for. With a simple list of
coarse concepts (e.g. verb, water), many concepts
will be distributed widely across neurons (Fong and
Vedaldi, 2018). Perhaps more fine-grained, com-
plex concepts are needed to explain individual neu-
rons’ behavior. (Mu and Andreas, 2020) addresses
this difficulty by starting with a list of individual
concepts (e.g. verb, water), then using a compo-
sitional search combining different concepts with
logical operators to build more complex concepts.
The procedure uses NOT, AND, and OR logical op-
erators to produce concepts in logical forms. It per-
forms a beam search with B = 10, building upon
the 10 most descriptive neurons for a given formula
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Figure 1: From (Mu and Andreas, 2020), top: as the
complexity of the concept increases, so does its match
with neuron activations. bottom: in the vision model,
accuracy increases when neurons that we can explain
fire. In the language model, accuracy decreases when
neurons that we can explain fire.

length (using the IOU metric described in 3 and
narrowing down to the ten best formulas of the next
length. In the original paper, they analyze a vision
model for image classification and an NLP model
for Natural Language Inference (NLI) tasks. NLI
is the task of determining whether, given a premise,
a hypothesis is true (entailment), false (contradic-
tion), or undetermined (neutral). For example, the
premise, “The man plays soccer” contradicts the
hypothesis “The man is sleeping”.

We are interested in two of the questions that
(Mu and Andreas, 2020) answers:

1. Do neurons learn compositional concepts?

2. Do interpretable neurons contribute to model
accuracy?

They find that, yes, neurons learn compositional
concepts (see Figure 1, top). They also find that, in
the vision model, the neurons that we are better able
to explain are more accurate, and in the language
model, the neurons that we are better able to ex-
plain are less accurate (see Figure 1, bottom). The

meaning of the metrics in Figure 1 are explained in
3.

2.2 CLIP

CLIP is pre-trained on text-image pairs, and learns
both a text encoder and image encoder as illustrated
in Figure 2. CLIP’s training objective is to max-
imize the similarity between its embedding of an
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Figure 2: From (Radford et al., 2021), this diagram
shows the pre-training architecture of CLIP.

image and its embedding of the text paired with
that image. This form of supervision aligns the
text and image representations, and makes CLIP
especially useful for zero-shot image classification,
Across a suite of 27 datasets measuring tasks such
as fine-grained object classification, optical char-
acter recognition (OCR), activity recognition in
videos, and geo-localization. CLIP’s zero-shot pre-
diction outperformed the state-of-the-art Noisy Stu-
dent EfficientNet-L2 on average across 27 datasets
(Radford et al., 2021). However, to our knowledge,
CLIP’s textual embeddings have only been used to
help encode the task, and have not been fine-tuned
for typical NLP tasks such as NLI.

3 Evaluation Metrics

Our two main evaluation objectives are those in
Figure 1, which answer the two questions asked by
(Mu and Andreas, 2020) in 2.

The match between a concept and a neuron can
be represented by the Intersection over Union (IoU)
between the mask of the neuron and the mask of the
concept, where [oU (A, B) = }‘:Bg} (see Figure
3). For neurons in the final layer of the network, we
calculate the IoU of each neuron and the concept it
best aligns with. We repeat this for many formula
lengths to see if the positive correlation between
IoU and concept complexity found in (Mu and
Andreas, 2020) holds in CLIP.

To compute how the accuracy of a model cor-
relates with the explainability of its neurons, we
calculate the IoU between a neuron and its best
concept as described in Figure 3. Then, we calcu-
late the performance of the model on the task when
each neuron fires past some threshold.




4 Methods

We answer whether the two metrics mentioned —
correlation between neuron and concept complex-
ity, correlation between neuron accuracy and ex-
plainability — hold in the following scenarios:

1. When we use a different model (CLIP) instead
of Resnet-18 and BiLSTM for image and NLP
tasks, respectively.

2. When we change the encoding of concepts to
be more complex.

4.1 Using CLIP Instead of BiLSTM and
Resnet

We directly replicate the techniques of (Mu and An-
dreas, 2020) for NLI. (Mu and Andreas, 2020) used
the BiLSTM architecture from (Bowman et al.,
2016) to encode the premise and hypothesis. Then,
these representations are concatenated along with
their element-wise product and difference, and fed
to a Multi-layer Perceptron (MLP) with a softmax
layer. We use the same architecture, but use the
CLIP text encoder instead of a BILSTM and only
train the weights of the MLP. Using these new mod-
els in both domains, we see if the findings of (Mu
and Andreas, 2020) mentioned in 2 and shown in
Figure 1 hold.
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Figure 3: An example of masks for linguistic concepts
(green) and neurons (blue), and the Intersection over
Union (IoU) between these masks. The 1s and Os repre-
sent the masks. For a concept, 1 indicates the concept
is in the sentence; for a neuron, (1) indicates that the
neuron activation to the sentence passed some threshold
(0 in this example). Looking specifically at the IoU
between Neuron 1 and the Noun concept, you can see
that the intersection of the masks is 2 because the con-
cept exists and the neuron activates passed the threshold
for the sentences “I am going to Paris by train” and
“Beautiful cars”. Similarly, the union is 3 because the
concept exists or the neuron is activated enough for the
same two sentences and the sentence “Ugly cars” (Noun
exists in the sentence, but Neuron 1 does not activate).

So, the IoU between Neuron 1 and Noun is %

4.2 Alternative Encoding of Concepts

We also explore how different encodings of con-
cepts in neurons affect the findings in Figure 1. In
(Mu and Andreas, 2020), the encoding scheme of
individual concepts is relatively simple. We try an
alternative encoding scheme. The original encod-
ing scheme only encodes logical compositions of
given word concepts (e.g. “Paris AND France”)
as in a sentence if that exact word appears in the
sentence (see Figure 3). Instead, we use WordNet
(Miller, 1995), a large database containing encod-
ings of semantic relations between words, to add
the synonyms of a word to a concept mask before
computing IOU. This encoding scheme is moti-
vated by the fact that the original encoding scheme
does not capture any of the semantic similarity be-
tween words. For example, under the encoding
scheme from (Mu and Andreas, 2020), the concept
“water” will not be encoded in the sentence “I swam
in a lake”, although it seems that the two are re-
lated. With the new encoding, if lake and water are
synonyms the concept water will now be related to
the original sentence. We encode part-of-speech in
the same way as the original encoding scheme.

5 Results

5.1 Re-implementation using CLIP

We used CLIP’s text encoder to create a latent rep-
resentation of the premise and hypothesis, then we
trained an MLP with a final softmax layer on the
Stanford NLI dataset. For each pre-trained weight
in the final layer of the MLP, we compute accuracy
when that neuron fires past some threshold.

First, we analyze the results using the IOU con-
cept encoding as described by (Mu and Andreas,
2020). As seen in Figure 4, when using a for-
mula length of one and CLIP as the encoder, the
negative accuracy-when-firing and IOU correlation
was statistically significant. When using our re-
implementation of the BiLSTM, it is not. Using a
formula length of two, as seen in 5, the correlation
between accuracy when firing and IoU becomes
more negative in both CLIP and the baseline BiL-
STM. The joint text-image training objective in-
creased the accuracy for the NLI task, but didn’t
change the trend in neuron explainability much.

We also validate that neuron-concept IoU in-
creases as the max formula length increases. Using
CLIP as the encoder, the average IoU with a for-
mula length of 1 was 0.19, and the average formula
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Figure 4: Formula Length One Results. top: the relationship between neuron explainability and model accuracy
when using the BILSTM with formula length one. bottom: the relationship between neuron explainability and
model accuracy when using CLIP. left: Concept encoding scheme from (Mu and Andreas, 2020). right: Our
concept encoding scheme that includes synonyms of concepts.
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Figure 5: Formula Length Two Results. top: the relationship between max formula length and neuron IoU when
using the concept encoding scheme from (Mu and Andreas, 2020) for classification on different datasets. bottom:
the relationship between max formula length and neuron IoU when using the Word2Vec concept encoding scheme
for classification on different datasets.



Unit 698 hyp:tok:outside
hyp loU: 0.277 Entail: - MNeutral: 0.006 Contra: -

Premise: two dogs run together across a grassy lawn .

Hypothesis: the dogs are outside

ACTH GT entailment PRED entailment

Premise: men playing football .
Hypothesis: some men are playing a game outside .

AcTHE GT neutral PRED entailment

Hypothesis: the girls eat their

Unit 870 ((NOT hyp:tok:man) AND pre:tok:man)

NOT hyp) AND pre) lou: 0.095 Entail: [l Neutral: 0021 contra: [
Premise: two boys in a field kicking a soccer ball .
Hypothesis: two girls are throwing a baseball .

ACT - GT contradiction PRED contradiction

Premise: the guys in white shirts horse around near a park

unch at the park .

ACT - GT contradiction PRED contradiction

Figure 6: left: Example high IOU neuron with formula length one, best concept found is hyp:tok:outside meaning
outside is in the hypothesis. right: Example neuron with formula length two, with the best length two formula
found indicating NOT man in the hypothesis AND man in the premise. Included with each neuron are two test
examples where the neuron has high activation along with the ground truth (GT) and model prediction (PRED).

length with a formula length of 2 was 0.21. This is
in line with 1.

5.2 New Concept Encoding

We analyzed the WordNet-aware concept encod-
ing described in 4 for both the Bi-LSTM encoder
and CLIP encoder with a formula length of 1 and
2. With a formula length of 1, the trend between
accuracy-when-firing and IoU decreases when us-
ing our alternative concept encoding, as shown in 4.
With a formula length of 2, the opposite happens:
the trend becomes less negative, as shown in 5.

However, the average IoU of a neuron’s top con-
cept did not change much. The mean difference be-
tween a neuron’s IoU with its top concept when us-
ing or not using the alternative encoding is 0.0014.
This similarity suggests that embedding the seman-
tic information of a word in the sentence does not
make a large difference in explaining that neuron’s
firing behavior.

5.3 Individual Neuron Qualitative Analysis

In 6, we show examples of two neurons from our
CLIP models with normal IOU concept encoding.
In neuron 698, we see evidence for why more com-
plex neurons are necessary to solve the NLI task.
If the neuron really did only encode the concept
“outside”, it would always highly weight the word
outside in the hypothesis to being entailment. The
word ~outside” should have no relation to the entail-
ment of the hypothesis, so the model would have
much lower accuracy.

In the right neuron of 6 we see Unit 870: a neu-
ron that has its highest loU with an intuitive for-
mula of length 2. Having a masculine noun (man,

boys) in the premise and not having one in the
hypothesis could be indicative of subjects being
changed in the sentences and a contradiction. But
this heuristic isn’t in the spirit of the task — the
neuron doesn’t seem to be actually matching up
subjects, just checking for the presence of men and
their subsequent absence. Thus, it learns a simple
heuristic that can effectively predict contradictions
in short, simple sentences used by the dataset. Prob-
ing this neuron’s highest-IoU points to reasonable
adversarial examples: the premise-hypothesis pair
’the boys said hello to the girls” and the girls said
hello” would likely be weighted towards contradic-
tion by Unit 870.

Perhaps this also gives some insight into why
more explainable neurons are less accurate. If a
neuron can be easily explained by a formula, maybe
it learns some heuristic of the training dataset
which is less general than neurons we can’t explain
with a formula.

6 Conclusion

We extended past research in the field of under-
standing individual neurons in Natural Language
Processing to multi-modal models. Specifically,
we showed that

1. Interpretability of neurons in CLIP’s text en-
coder are negatively correlated with accuracy,
across many tasks.

2. Using a more sophisticated encoding of con-
cepts has little effect of interpretability of neu-
rons.

This suggests that using the unique joint learn-
ing objective between images and text maintains



trends in neuron interpretability. This also suggests
that results of (Mu and Andreas, 2020) might be
general in NLI — explainability of neurons in NLP
tasks anti-correlated with accuracy of the model,
regardless of the specific encoder. The robustness
of results when using a word and its synonyms
versus a single word suggests that encoding the
semantic information of a word in the concept is
not necessary to explain a neuron’s firing activity.
Neuron interpretability could be independent of
the concept calculation, as long as the concept is
encoded reasonably.

Future research could further explore encoding
concepts in natural language sentences to improve
neuron explainability. Additionally, we, like (Mu
and Andreas, 2020), only analyzed the neurons at
the output layer. Future research could analyze
how neurons in earlier layers of the MLP encode
compositional concepts. Another natural extension
of our work is to explore how other pre-trained
language models represent concepts in neurons.
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