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Abstract

How can we construct meaning out of an im-
age? Two key ingredients of human scene
parsing are hierarchy and symbols. How-
ever, in neural networks that are tasked to
find low-dimensional semantic embeddings,
the representations are not necessarily sym-
bolic or hierarchical. One neural network archi-
tecture, Vector-quantized Variational Autoen-
coders (VQ-VAEs), learns discrete representa-
tions. Another architecture, Hyperbolic Autoen-
coders (hVAEs), learns representations that are
implicitly hierarchical. In this work, we com-
bine the vector-quantization of VQ-VAEs with
the hyperbolic embedding space of hVAEs to
train a Hyperbolic Vector-quantized Variational
Autoencoder in a step towards learning discrete
hierarchical representations. Then, we imple-
ment and benchmark various training methods
to improve training stability.

1 Introduction

Capturing the meaning of a photo is a difficult prob-
lem. In Figure 1, the left-most photo is more simi-
lar pixel-wise to the right-most photo, however, its
meaning is more similar to the center photo: both
depict a bird sitting on a branch. In other words, the
two photos on the left have a more similar semantic
representation. Although it is not perfectly under-
stood how humans construct meaning or how this
meaning is represented (Fodor, 1975; Margolis and
Laurence, 1999; Medin and Schaffer, 1978; Rosch
and Mervis, 1975; Smith and Medin, 2002), it is
generally agreed upon that people use composition-
ality as part of the process (Carey, 2011; Fodor and
Lepore, 1996; Kamp and Partee, 1995; Markman,
1991; Osherson and Smith, 1981; Smith and Osher-
son, 1984), meaning that people construct meaning
of an object (e.g. bird) from its sub-parts (e.g. beak,
feathers, wings, etc...) and their combination (e.g.
the eyes are above the wings, the beak is in front of
the head, etc...). Compositionality requires discrete
symbols to determine what is a “part” and hierarchy
to determine which parts are sub-parts.

In machine learning, finding semantic represen-
tations is an active area of research. Typically, this
comes in the form of mapping images to points in

Figure 1: From left to right: a Kingfisher bird sitting on
a branch, a Scarlet Macaw sitting on a branch, a Blue
Hippo Tang fish. Although the left-most photo is more
semantically similar to the center photo, it is actually
more similar to the right-most photo using a pixel-wise
comparison.

Euclidean space where images with similar seman-
tic content are close to each other in the embedding
space. There has been work to build in discrete-
ness and hierarchy into these architectures, but they
each have limits as discussed in Section 2.2.

We posit that incorporating compositionality in
the neural network architectures will improve se-
mantic representations for two reasons. For one,
the meaning of images are inherently composi-
tional so we can expect that building in this archi-
tectural prior will better fit the data. Additionally,
encoding hierarchy can increase the computational
efficiency of vector-quantized neural networks by
enabling lower-dimensional representations as dis-
cussed in Section 3.1. This increased computa-
tional efficiency enables using more symbols for
the same computational budget, which has been
shown to increase performance (van den Oord et al.,
2017).

In order to build-in compositionality, we
will build-in both discreteness (through vector-
quantization) and hierarchy (through hyperbolic
embeddings). Our contributions are:

• Implementation and benchmarking of a vector-
quantized variational autoencoder with hyper-
bolic embeddings and codebooks.1

• Analyses of training pathologies that do and
do not improve stability of training and test
performance.

1All code for implementation and experiments can
be found at https://github.com/samacqua/
hyperbolic-vqvae

https://github.com/samacqua/hyperbolic-vqvae
https://github.com/samacqua/hyperbolic-vqvae


2 Background

2.1 Hyperbolic Space
Euclidean space is the space that most aligns with
people’s intuitions about geometry; the sum of the
internal angles of a triangle sum to 180 degrees,
the distance between two points in 2-dimensions
is d(p, q) =

√
(q1 − p1)2 + (q2 − p2)2, 2 parallel

lines are equidistant everywhere, and polygons of
different areas can be similar.

All of these properties can be derived from 5
postulates called Euclid’s Postulates. Of interest is
the final postulate, which says that given a line l
and a point p, there is only 1 line that goes through
p and is parallel to l. This postulate is much less
intuitive than the first four, and mathematicians
have tried to derive this postulate from the first four
without success (Niemiec and Pikul, 2022). So,
many have explored what properties arise when
you don’t accept the final postulate.

If one rejects the fifth postulate and, instead,
posits that there is more than 1 line that goes
through p and is parallel to l, then we derive hy-
perbolic space. This space differs from people’s
geometric intuitions; the sum of the internal an-
gles of a triangle sum to less than 180 degrees, the
distance between two points is shown in Equation
1, 2 parallel lines are converge in 1 direction and
diverge in the other, and there are no examples of
polygons of different areas that are similar.

Hyperbolic space has the useful property that
it is intrinsically better fit to represent tree struc-
tures than Euclidean space (Ganea et al., 2018).
In Euclidean space, the circumference of a circle
increases linearly with the circle’s radius while
in hyperbolic space, the circle’s circumference in-
creases exponentially with its radius. Since the
number of nodes in a tree increases exponentially
with the tree’s depth, hyperbolic space allows one
to lay out a tree without cluttering; placing a node
far enough from its parent gives the node nearly
the same amount of space as its parent for laying
out its own children.

2.2 Autoencoders
One model class that attempts to learn semantic
representations is the autoencoder as shown in Fig-
ure 2. Autoencoders find these representations by
using a neural network encoder to compress an im-
age to a lower-dimensional encoding and a neural
network decoder to reconstruct the input from this
lower-dimensional representation.

Figure 2: A depiction of an autoencoder architecture.
The original image is fed through a neural network en-
coder to generate a lower dimensional representation
in latent space. This compressed representation is fed
through a neural network decoder to reconstruct the in-
put image.

2.2.1 Variational Autoencoders
One drawback of vanilla autoencoders is that, after
training, sampling from the semantic representation
in order to generate a reconstructed image is dif-
ficult. Since the only restriction on the bottleneck
is that it maximizes the reconstruction accuracy,
the distribution over the latent space is difficult to
determine (Bank et al., 2020). This is a drawback
because then one cannot use the learned represen-
tation to generate semantically plausible images.

The Variational Autoencoder (VAE) deals with
this issue by encoding the input as a distribution
over the latent space instead of as a single point.
Although one can use any distribution to model the
latent space, let us assume we are using a normal
distribution. In this case, the VAE’s encoder will
output the mean and standard deviation of a mul-
tivariate normal distribution. A sample from this
distribution is then fed to the decoder to reconstruct
the image. In addition to the regularization effect
of enforcing a Gaussian latent space, this param-
eterization has the added benefit that we can now
sample from the semantic space after training be-
cause we now know the distribution of the latent
space.

2.2.2 Vector-Quantized Variational
Autoencoders

Another variant of the autoencoder is the Vector-
quantized variational autoencoder (VQ-VAE)
(van den Oord et al., 2017). VQ-VAEs “quantize”
the low-dimensional representation by maintain-
ing a discrete list of vectors in Euclidean space,
called the “codebook”. Then, instead of feeding
the output of the encoder directly to the decoder,
the VQ-VAE uses the codebook vector that is clos-
est to the encoding as the input to the decoder. For
images, the image is usually divided into a grid of
patches which are each quantized independently.



In this way, VQ-VAEs generate the representation
of an image as a set of these discrete codes. This
discreteness could in itself be an advantage since it
is more explainable and more robust to adversarial
examples (Huh et al., 2022). Additionally, one can
train a prior over the latent codes after training in
order to be able to sample from the codebook to
generate semantically plausible images.

2.3 Hierarchical Autoencoders

Although the VQ-VAE effectively introduces dis-
crete codes into the semantic representation, it does
not address the issue of incorporating hierarchy.
Here, we will go over two different approaches to
incorporating hierarchy in autoencoders.

2.3.1 Hyperbolic VAEs
One way to incorporate hierarchy in VAEs is to
use hyperbolic space at the bottleneck instead of
Euclidean space. There has been work using hyper-
bolic distributions to parameterize and sample from
the latent space instead of Euclidean distributions
(Nagano et al., 2019). This architecture, called
the Hyperbolic Variational Autoencoder (hVAE),
derives a hyperbolic equivalent of the normal distri-
bution called the wrapped normal. Experimentally,
hVAEs outperform their Euclidean counterparts in
tasks that require hierarchical representations, es-
pecially when the embedding dimension is small.

2.3.2 Hierarchical VQ-VAEs
Another way to incorporate hierarchy is through
multiple quantization layers. Huh et al. found
some success with this technique; earlier layers
seem to encode lower-dimensional features while
later layers incorporate higher dimensional features
(Huh et al., 2022). This paper also presented dif-
ferent training pathologies that we use in order
to improve training such as codebook initializa-
tion techniques, bounded measure spaces, ensuring
smoothness, and grouped vector quantization.

3 hVQ-VAE

3.1 Motivation

The Hierarchical VQ-VAE is the only previously
discussed architecture that incorporates both dis-
crete symbols and hierarchy. They found that in-
corporating hierarchy on top of the discrete codes
of VQ-VAEs, through the form of multiple quan-
tization layers, was beneficial. This is one major
aspect of the motivation as it confirms our intuition

that incorporating a compositionality prior into the
architecture will better fit the data.

Additionally, the work on hyperbolic VAEs
found that incorporating hierarchy through hyper-
bolic space improved the performance of VAEs, es-
pecially in lower dimensions (Nagano et al., 2019).
In VQ-VAEs, this low-dimensionality performance
is important because quantization operation scales
linearly with the size of the codebook and the size
of each codebook vector. So, decreasing the code-
book vector dimensionality allows us to increase
the codebook size with the same computational
budget. It has been shown that increasing the num-
ber of codebooks increases VQ-VAE performance
(van den Oord et al., 2017).

So, we provide a different approach to incor-
porating hierarchy in VQ-VAEs; instead of using
multiple quantization layers, we take inspiration
from the success of hVAEs and use a hyperbolic
embedding space to create the hyperbolic Vector-
quantized Variational Autoencoder (hVQ-AE).

3.2 Architecture
The architecture of the hVQ-VAE is very similar
to that of the VQ-VAE. The only difference is that
the embeddings and codebooks are in hyperbolic
space. Concretely, this means that the encoder and
decoder for VQ-VAE and hVQ-VAE are identical.
However, in the hVQ-VAE:

• the encoding is converted to hyperbolic space

• the codebooks are initialized using hyperbolic
distributions

• the distance between the embedding and the
codebook vectors are calculated using the hy-
perbolic distance function

• the hyperbolic codebook is converted to eu-
clidean space before being passed to the de-
coder

For our experiments, we used a Resnet-style en-
coder and decoder, each with 3 layers.

3.3 Derivations
In order to train the hVQ-VAE, we needed to derive
a few hyperbolic equivalents of Euclidean func-
tions. First, since the embeddings and codebooks
are in hyperbolic space, we need to use the hyper-
bolic distance function instead of the Euclidean
distance function in order to implement the quan-
tization function. In hyperbolic space, using the



Poincaré disk model, the distance between two
points p and q is:

d(p, q) = ln
|aq| |pb|
|ap| |qb|

(1)

where a and b are the two ideal points where
the unique hyperbolic line connecting them inter-
sects the boundary, and |xy| indicates the Euclidean
length of the line segment connecting x and y in
the model.

Additionally, we need to derive a hyperbolic
equivalent of the traditional VQ-VAE loss func-
tion. In order to calculate the total loss, we need
to calculate the reconstruction error and the dis-
tance between the un-quantized embedding and the
quantized embedding.

The loss for the reconstruction error remains un-
changed from the canonical VQ-VAE loss since
the input and output are still in Euclidean space, as
long as we correctly back-propagate through the
hyperbolic embeddings. To do so, we use a geomet-
ric optimization library that preserves the gradients
when translating between Euclidean and hyperbolic
space. To calculate the distance component of the
loss function, we simply use the hyperbolic dis-
tance function instead of the Euclidean distance
function.

3.4 Optimization

VQ-VAEs are notoriously difficult to train stably.
Additionally, hVAEs are experimentally more dif-
ficult to train than Euclidean VAEs. So, we incor-
porated many training methods from Hu et al. to
improve performance of the hVQ-VAE.

3.4.1 Codebook Initialization

In order to improve the training of vector-quantized
methods, we want to reduce the gradient error by
reducing the difference between the embedding
and the quantized embedding. To this end, we want
to initialize the codebooks such that, even before
training, the quantized embedding is close to the
unquantized embedding. We reimplemented Hu
et al.’s experiments on the effect of different code-
book initialization techniques and confirmed their
result that using data-dependent initialization both
decreases KL-divergence between the embedding
and the quantized embedding, and improves exper-
imental performance.

3.4.2 Loss Function Changes
Another way to decrease the gradient approxima-
tion error is to ensure that the decoder function is
smooth. We can ensure this by adding a smooth-
ness term to the loss function. We found, contrary
to Hu et al.’s results, that ensuring the smoothness
of the decoder does not improve the experimental
performance of hVQ-VAEs.

Another change to the loss function is to use a
bounded similarity metric. However, this is prob-
lematic in hyperbolic space. In Euclidean space,
one can use the cosine distance instead of the canon-
ical Euclidean distance function to compare embed-
dings to codebooks with the added benefit of the
cosine distance being bounded between 0 and 1.
However, the hyperbolic analog of the cosine dis-
tance is lower-bounded by 0 but has no finite upper
bound. We can trivially create a bounded measure
by taking the inverse of this unbounded measure,
but this measure loses its theoretical similarity to its
Euclidean counterpart and experimentally provides
no benefit.

3.4.3 Grouped Vector Quantization
Hu et. al provides a new quantization method called
Grouped Vector Quantization (GCV) which helps
to prevent under-training of the sub-vectors. In
GVC, each vector is divided into a group of smaller
vectors, called sub-vectors. Each sub-vector is in-
dependently quantized using a shared codebook.
The quantized sub-vectors are then re-concatenated
to create the final embedding vector. We found that
GCV improves the performance of hVQ-VAEs.

4 Performance against VQ-VAE

We tested hVQ-VAEs on three tasks: image recon-
struction, image classification, and a synthetically
generated hierarchical representation task. For im-
age reconstruction and classification, we used two
datasets: MNIST and CIFAR-10. MNIST is a
dataset of hand-written single digits, while CIFAR-
10 is a dataset of photos of 10 objects. Both of
these datasets are considered simple datasets which
we focus on due to the lack of compute availability.
We used both data-dependent codebook initializa-
tion and GVC as outlined in the previous section.

For the hierarchical representation task, we gen-
erated an artificial dataset of binary trees and then
measured how similar the latent space distances
were to the Hamming distance of the underlying
tree representation. For this task, we used data-



dataset d VQ-VAE hVQ-VAE

M
N

IS
T

2 0.97 ± 0.12 0.97 ± 0.04

5 0.73 ± 0.15 0.84 ± 0.06

10 0.72 ± 0.13 0.85 ± 0.09

20 0.63 ± 0.07 0.74 ± 0.04

C
IF

A
R

-1
0 2 0.92 ± 0.29 0.88 ± 0.07

5 0.95 ± 0.35 0.79 ± 0.04

10 0.82 ± 0.25 0.74 ± 0.02

20 0.82 ± 0.17 0.71 ± 0.06

Table 1: Quantitative comparison of Hyperbolic VQ-
VAE (hVQ-VAE) against Vanilla VQ-VAE on the
MNIST dataset in terms of mean-squared-error for a
reconstructed test set, for different latent dimensional-
ities d. We calculated the mean and the ± 2 standard
deviations with five different experiments.

dependent codebook initialization.

4.1 Reconstruction

We found that, on both MNIST and CIFAR-10,
the hVQ-VAE and VQ-VAE performance was not
statistically significant, as shown in Table 1. The
hVQ-VAE consistently had a slightly lower mean-
squared-error in lower dimensions than VQ-VAE
(d = 2), but it was not statistically significant.
Qualitatively, we found no distinctive difference
between the generated images from the two archi-
tectures, as shown in Figure 3.

Figure 3: Unconditional image generation for MNIST
(top) and CIFAR-10 (bottom), using a hVQ-VAE (left)
and a VQ-VAE (right).

dataset d VQ-VAE hVQ-VAE

M
N

IS
T

2 0.77 ± 0.04 0.81 ± 0.05

5 0.85 ± 0.02 0.85 ± 0.02

10 0.84 ± 0.04 0.83 ± 0.09

20 0.88 ± 0.02 0.87 ± 0.07

C
IF

A
R

-1
0 2 0.31 ± 0.01 0.33 ± 0.01

5 0.39 ± 0.02 0.38 ± 0.03

10 0.37 ± 0.03 0.36 ± 0.03

20 0.42 ± 0.02 0.39 ± 0.04

Table 2: Quantitative comparison of Hyperbolic VQ-
VAE (hVQ-VAE) against Vanilla VQ-VAE on the
MNIST dataset in terms of classification accuracy, for
different latent dimensionalities d. We calculated the
mean and the ± SD with five different experiments.

4.2 Classification

We found that, on both MNIST and CIFAR-10,
the hVQ-VAE and VQ-VAE performance was not
statistically significant, as shown in Table 2. The
hVQ-VAE consistently had a slightly higher clas-
sification accuracy in lower dimensions than VQ-
VAE (d = 2), but it was not statistically significant.

4.3 Hierarchical Representations

Model Correlation Correlation w/ Noise

VQ-VAE 0.446 ± 0.03 0.189 ± 0.01

hVQ-VAE 0.597 ± 0.10 0.271 ± 0.05

Table 3: Results of tree embedding experiments for
the Hyperbolic VQ-VAE and Vanilla VQ-VAE. We cal-
culated the mean and the ± 2 SD with five different
experiments.

We used the dataset generation technique from
the hVAE paper to quantitatively compare how hier-
archical each architectures’ codebooks are (Nagano
et al., 2019). To construct the dataset, we first gen-
erate a binary tree of depth d = 8. Then, we obtain
a binary representation for each node in the tree
such that the Hamming distance between any pair
of nodes is the same as the distance on the graph
representation of the tree. Then, for each node, we
randomly flip each coordinate value with probabil-
ity ϵ = 0.1.

We use a 3-layer MLP to map each binary set
into the 2-dimensional latent space of the VQ-VAE
or hVQ-VAE. After training, we compare the cor-
relation between the distance in data-space (Ham-



ming distance of the underlying nodes) with the
distance in embedding space (Euclidean distance
between the quantized embeddings for VQ-VAE,
hyperbolic distance between quantized embeddings
for hVQ-VAE). For this experiment, we set the
number of codebook vectors to 64.

We found that the hVQ-VAE had higher corre-
lations with the underlying tree structure distances
than the Euclidean VQ-VAE on both the un-noised
binary tree and the noisy binary trees, as shown
in table 3. This result gives us confidence that the
hVQ-VAE does have some greater ability to repre-
sent hierarchy.

5 Conclusions

5.1 Discussion

We found that on both image construction and
image classification tasks for two simple base-
lines, hVQ-VAE performs comparably to VQ-
VAEs, even in low-dimensional settings. However,
we found that hVQ-VAEs outperform VQ-VAEs in
representing hierarchical structures in embedding
space. We have three theories to join these two
results:

1. The datasets we tested on (MNIST and
CIFAR-10) are not that hierarchical. Although
humans may use hierarchy to understand im-
ages (as in Figure 1), neural networks may
exploit other properties of the images to learn
useful semantic representations. In this case,
enforcing a space that has the benefit of more
space for hierarchy would not necessarily im-
prove performance. In this case, the hyper-
bolic space adds no benefit since the network
does not learn to exploit the implicit tree struc-
ture, and it adds the negative of difficult opti-
mization.

2. The image patches that are quantized are too
small to benefit from encoded hierarchy. It
may be that, even if MNIST and CIFAR-10
could benefit from hierarchy, the current hVQ-
VAE is unable to exploit it because it is en-
coding patches of each image and a given
patch is too low resolution to benefit from
hierarchy (see Figure 4). Our preliminary ex-
periments compared the performance of VQ-
VAEs and hVQ-VAEs with different patch
sizes on MNIST and CIFAR-10, but found
no statistically significant results. However, it

may be that the image quality of the patches
in these datasets are still too low.

3. MNIST and CIFAR-10 are more difficult
datasets than the generated binary tree dataset
that require optimization for hVQ-VAEs. As
noted in the original paper on hVAEs, there
are difficulties with hyperbolic optimization.
It may be that hVQ-VAEs would provide a
performance benefit as is, but it requires addi-
tional work in improving optimization.

Figure 4: The same photo with two different patch sizes.
In the photo on left, each patch is larger so it may benefit
more from hyperbolic space. On the right, each patch is
encoding a smaller region of the image, and the hierar-
chical benefit of hyperbolic space may not be exploited.

We also found that, for hVQ-VAEs, data-
dependent initialization and grouped vector quan-
tization improves performance, but a smooth de-
coder function and a bounded similarity measure
does not. Although we provided justification for
why the bounded similarity measure does not im-
prove performance, it is still an open question why
the smooth decoder function does not improve per-
formance with a hyperbolic embedding space.

5.2 Future Work
If our proposed architecture, the hVQ-VAE, had
shown improvement over euclidean VQ-VAEs, a
natural extension would be to combine hVQ-VAEs
with the work of Hu et al.. Concretely, this would
entail using multiple hyperbolic vector quantization
layers. However, work must be done to answer the
question raised in 5.1 before trying this direction.

In future work, we can test each hypothesis. To
test the first idea, we can generate image datasets
that are explicitly hierarchical and train hVQ-VAEs
on that dataset. To test hypothesis 2, we can use
more compute on datasets with larger images to
see if hVQ-VAEs outperform VQ-VAEs. If it is
true that the hVQ-VAE does not outperform VQ-
VAEs because the quantized patches are too low



resolution, then training with larger patches on
higher-resolution images would show a benefit of
hVQ-VAEs. To test the third idea, we can try more
training changes, such as training with increased
floating point precision as suggested in (Sa et al.,
2018).
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