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Abstract

Compositionality, the capacity to understand and generate com-
plex ideas by combining simpler ones, is a critical attribute of human
intelligence and plays a pivotal role in sophisticated problem-solving
tasks. However, prior research on the decomposition of problem-
solving tasks has been constrained by several limiting assumptions.
Notably, these include neglecting the competence of the agent tasked
with problem-solving and failing to effectively interweave subgoal gen-
eration with acting towards these subgoals. The proposed thesis aims
to redress these deficiencies by pursuing a two-pronged approach.
Firstly, I will computationally model and perform a human study to
understand how people use Theory of Mind — a causal model of how
one’s mental state leads to action — to generate subgoals. Secondly, 1
will extend previous work on resource rational-planning to investigate
how people merge planning with action. These human studies will
then form the basis for a prompting approach for language models,
designed to improve their decomposition ability and augment their
performance on complex reasoning tasks.
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1 Introduction

1.1 What is Decomposition?

Compositionality, the ability to determine the meaning of a concept by its
sub-parts and their combination, is a fundamental aspect of human intel-
ligence [1, 2, 3, 4, 5, 6]. Compositionality can be viewed as the ability to
determine the meaning of f(g(x)) when f and g are known functions [7].

Task decomposition, the ability to find sub-problems in a task and use
their solutions to solve the original task, requires compositionality and is
necessary for efficiently and flexibly addressing the vast array of challenges
people must face. This can be viewed as, given a function h(z), finding a
set of n functions Z such that h(z) = z1(x) o z3(x)... 0 z,(z), where z; € Z.
When n = 2, this reduces to finding f and g such that h(z) = f(g(x)).

For example, when planning a route from MIT to Berkeley, one can de-
compose the problem into first navigating to the airport, then flying to San
Francisco, then navigating from San Francisco to Berkeley. In turn, each
subtask can be arbitrarily broken down into a set of further subtasks.

1.2 The Necessity of Decomposition

Decomposition is necessitated by the sheer number of potential tasks in the
world, which are far too numerous to be approached monolithically. For ex-
ample, take the task of question-answering. Even if one assumes that any sin-
gle trivia fact can reasonably be memorized (as potentially evidenced by the
high performance of large language models on question-answer benchmarks
8, 9, 10]), the ability to decompose the problem into individual questions is
still necessary [11]. To answer 2-hop questions (questions such as “Who was
the President of the United States the year that LeBron James was born?”
which requires using the answer of one question to form the other) quickly
becomes infeasible without decomposition, as it requires that each of the n?
possible combinations of the n facts appear in the training data.

1.3 Reducing the Compositionality Gap

Interestingly, large language models have shown evidence of compositional
reasoning ability [12, 13, 14]. However, there remains a significant “composi-
tionality gap” between the individual bits of knowledge that language models
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possess and their ability to use these pieces of knowledge together to answer
new questions (such as multi-hop trivia questions) [15]. While prior work
has reduced this gap via prompting, the gap continues to exist, especially on
tasks where the decomposition is not clear [16, 17, 18].

One potential method to mitigate this compositionality gap is to study
how humans decompose problems. Previous works have indeed studied and
modeled how humans decompose problems, but these studies, while pro-
viding an interesting normative account of human decisions, have been in
limited domains where simple baselines still outperform more complete mod-
els. Therefore, this thesis aims to extend current understanding of human
problem solving by studying task decomposition in more realistic environ-
ments. Concretely, this work will curate new datasets of how humans de-
compose problems, create new models to explain human performance on
these datasets, and use the collected data to inform new strategies for using
language models to perform complex reasoning tasks.

2 Related Work

2.1 Planning with Theory of Mind

Theory of Mind is a central construct in cognitive science, denoting our
capacity to infer and predict others’ thoughts, beliefs, and actions [19]. Prior
work argues that, in addition to using Theory of Mind for prediction, people
use Theory of Mind when planning to change other’s actions [20].

This work is limited to planning in simple social settings and does not
address task decomposition or subgoal-setting. However, it motivates our
thesis work because it shows that in order to predictably change the action
of another agent, one must infer their mental states and capabilities. When
generating a subgoal (the end-state of one part of a task decomposition),
this necessity is clear. In the example of navigating from MIT to Berkeley,
one would give different subgoals for an MIT student than they would for a
Berkeley student; the MIT student would need less guidance in Boston than
a Berkeley student because they are more familiar with the area.
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Figure 1: A subset of the graphs presented in [21], where participants chose
nodes as subgoals in shortest-path problems.

2.2 Resource Rational Planning and Task Decomposi-
tion

Prior work argues that people, when decomposing tasks, are resource-rational
— meaning that they approximate optimal behavior given their cognitive con-
straints [21]. While their resource-rational model more closely matches hu-
man performance than previous accounts of how humans decompose tasks,
it is limited in a few ways. First, it is in a very limited domain — finding
the shortest path between two points in small graphs (as shown in Figure
1). Second, it does not outperform a simple baseline called betweenness cen-
trality, which (roughly) assumes that people identify bottlenecks in a graph
as subgoals. This is likely due to the simplicity of the tasks, where a more
complete model is unnecessary to model human performance. Additionally,
the provided model is itself a normative account and is not computationally
feasible for people.

Other work in the planning literature shows that people are resource-
rational when planning in deterministic environments [22]. However, this
work does not apply to stochastic environments because their work depends
upon the assumption that it is optimal to do all planning before taking action.
In reality, when there is uncertainty about the future, one cannot just plan
everything and then act out those plans. Instead, people interweave planning
and action, balancing the uncertainty of future plans with the sub-optimality
of acting before planning out everything.
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2.3 Neural Subgoal Proposals

Prior work in the planning domain shows that generating subgoals at different
levels of granularity, depending on the complexity of the task at hand, im-
proves performance of hierarchical planning algorithms [23]. However, these
subgoals are “blind” to the competence of the agent, and the model requires
many expert trajectories or a simulator to be able to generate meaningful
subgoals. Because of this limitation, many of the suggested subgoals are
unattainable for the agent and must be filtered.

Another technique for incorporating subgoals into problem solving is
prompting language models to decompose tasks into smaller parts that are
more likely to be solvable. These prompting techniques, such as Chain of
Thought (CoT), self-ask, and chain-of-symbol show significant improvements
in reasoning performance of language models, but have several limitations
[16, 15, 17]. Primarily, they are largely agnostic to insights from cognitive
science regarding task decomposition and rely wholly rely on the implicit
decomposition ability of the language model. Additionally, these techniques
take a very linear approach to problem-solving where the proposed decom-
position cannot be changed after it is proposed, which may not always be
optimal or reflective of how humans navigate complex problems.

3 Proposed Work

For my thesis work, I will address the limitations outlined in previous works.
To do so, I propose to perform two related human studies, model the human
behavior from these experiments, and use these data to improve language
model task decomposition performance. Specifically, I aim to:

1. Model how people use Theory of Mind to decompose problems, and
collect data to validate this model.

2. Model how people use resource-rationality to decompose problems in
stochastic environments, and collect data to validate this model.

3. Use these computational accounts of resource-rational task decomposi-
tion with Theory of Mind to improve language model performance on
tasks requiring decomposition.
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3.1 Decomposition with Theory of Mind

The “goodness” of a subgoal depends on the capability of the agent attempt-
ing to perform the task. In the example of a student navigating from MIT to
Berkeley, the MIT student may need more subgoals in California than they
do in Massachusetts, and vice versa. As outlined in Section 2.1 and Section
2.2, prior work in Theory of Mind does not address task decomposition, and
prior work in task decomposition does not incorporate Theory of Mind.

In this experiment, we will bridge this gap by collecting data on tasks
where the study participant must use Theory of Mind to generate useful
subgoals. Specifically, a participant will be shown an agent navigating an
environment (like the graphs in Figure 1) with a clear policy, 7, trying to
reach a goal state, g. Then, after the study participant watches the agent
attempt to reach a few different goal states, the agent will be presented with
a new goal. The user will be prompted to generate a subgoal, z, for the
agent to help the agent navigate towards the goal state, g. Additionally, the
participant will be tasked with predicting the agent’s next action at different
states to probe whether the participant has a good model of the agent’s
behavior. If humans use Theory of Mind when decomposing problems, the
usefulness of their subgoal, z, should increase with their ability to infer the
agent’s policy, 7.

This study offers many benefits over prior work. For one, the necessity
of inferring the agent’s policy, m, makes it unlikely that simple heuristics
will be enough to fully capture human performance. Additionally, it offers a
grounded metric of the value of a given task decomposition — the amount of
time, ¢, that it takes the agent to reach the goal state, g. This is in contrast
to prior work which only compared the correlation between models of human
task decomposition and human performance and found that the betweenness
centrality heuristic best fit the human data.

Additionally, it provides a test bed to compare computationally tractable
versions of normative accounts of human performance. While previous work
was interested in task-agnostic decomposition, which requires reasoning over
all possible starting states s and goals g, we are interested in task decompo-
sitions that are dependent on the starting state and goal state, which avoids
this expensive computation. Additionally, in [21], the reward of a subgoal z
is
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Rp1g(s,2) = X;PAlg(Wvﬂsa 2)[R(m) —1]

where PAlg is a distribution over plans, 7, and run-times, ¢, according to
the search algorithm Alg, and R(w) is the reward associated with executing
a plan. Intuitively, this equation jointly optimizes task rewards and run-time
efficiency. This requires running the search algorithm Alg for each considered
goal state z and computing the distribution of run-times. Instead, under our
model, we would consider the reward of a subgoal z as

R(s,2) = zt:P(t\s, z,7)[R(7") — t]

where 7’ is an approximation of © dependent on the history of the agent.
In this formulation, the distribution over run-times is dependent on the in-
ferred policy ' rather than jointly modeling the run-times and plans. This
allows us to separately experiment with computationally feasible approx-
imations to 7 using Theory of Mind and the distribution over run-times
P(+). In summary, our experiment will require models with higher explana-
tory power, and our proposed model framework will allow us to incorporate
Theory of Mind, model computational approximations, and maintain the
resource-rationality of the original model.

3.2 Stochastic Task Decomposition

Prior work outlined in Sectin 2.2 shows that people are resource-rational
when planning in deterministic environments. However, the real world is
stochastic, and it is not always resource rational to do all planning before
any action; if the future brings one away from the path they planned, then
the effort they spent planning would be wasted. In the MIT to Berkeley
navigation example, one might set San Francisco International Airport (SFO)
as a subgoal; although there may be other (more optimal) routes that do not
go through SFO, buying the ticket allows one to plan the rest of their trip
from SFO with less uncertainty. If a flight is delayed or cancelled, then one
might still attempt to go to SFO (rather than another route of transportation
to the Bay Area) so that they can follow their original plans from SFO.

In this experiment, we will study how people set subgoals as a way to re-
duce uncertainty in stochastic environments. We will use a stochastic version
of the setup used in [22] (show in Figure 2). In this setup, the participant
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Figure 2: The interface shown to subjects in [22]. In our stochastic version
of the experiment, we cannot linearly transition from b to ¢ to d. Instead,
the user will be able to dynamically switch between planning (b and c¢) and
action / subgoal-setting (d). Note that, when executing a plan in d, the
transition in our experiment will be stochastic.

is tasked with maximizing rewards along a path. The participant, in the
original study, must first “plan” by revealing the rewards (b and c in Figure
2), then “act” by using the arrow keys to choose the path (d in Figure 2).
In our version of the experiment, the actions are stochastic, meaning that if
one presses the “Left” arrow key, there is a non-zero probability that they
may go another direction. This introduces a new complexity; where previous
work could decompose the task into a planning stage and an acting stage,
we now need to be able to interweave action and planning, as it is no longer
optimal to do all planning before taking any actions.

This study paradigm allows us to investigate a question that was unad-
dressed in the original work: how do people balance uncertainty with sub-
optimal behavior? As people are forced to explicitly switch between planning
and acting, we can see when people a). stop planning to take action, b). stop
acting to plan more, and c). abandon their original plans. This work will
be the first to investigate the very non-linear nature of planning in subgoal
generation.

3.3 Language Models as Subgoal Generators

Transformer models have been used as subgoal generators to guide search,
but this only works with access to expert trajectories or in relatively simple
domains, as outlined in Section 2.3. Humans, on the other hand, can gen-
erate a more refined search with little to no domain-specific data. Can we
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augment language models so that, similarly to humans, they can generate
useful subgoals in these complex reasoning tasks without access to thousands
of training trajectories?

To answer this question, we can run program synthesis with language-
model subgoals and compare the number of tasks solved with a fixed com-
pute budget. In these tasks, the subgoals can take many forms: an ex-
act state (e.g. [True, False, Falsel), a state predicate in code (e.g.
[i % 2 == 0 for i in input]), or astate predicate in language (e.g. “Make
each element in the input true if it is even”) which would then be evaluated
by the language model.

Using this experimental paradigm, we can ask many questions pertinent
to the question of task decomposition. First, do these subgoals help search at
all? It may be the case that, for some domains, language models cannot gen-
erate semantically meaningful subgoals without extensive fine-tuning. Sec-
ond, how much do task descriptions help subgoal generation? While there
is evidence that language models can perform program induction [24, 25],
providing natural language descriptions of the task-to-solve could allow the
language model to generate subgoals even if it could not induce the solution.

Additionally, we can also collect human data to generate a baseline from
which to compare these language model-generated subgoals. Like the lan-
guage model subgoals, these subgoals can take many forms: such as language
descriptions of intermediate states or exact intermediate states. Specifically,
we can compare the performance of the program synthesis engine on sub-
goals generated by humans with subgoals generated by language models. For
these comparisons, we could run on many domains, such as the Language-
annotated Abstraction and Reasoning Corpus (abstract reasoning) [26, 27],
CLEVR (visual reasoning) [28], INT (automated theorem proving) [29], or
Sokoban (puzzle game) [30].

A stretch goal for this thesis work is to use the findings from Sections 3.1
and 3.2 to motivate a new prompting or decoding technique which improves
the performance of language models in generating subgoals. This would be a
unique contribution of a new language model prompting or decoding method
which was motivated by work in cognitive science; previous prompting tech-
niques are largely motivated by other intuitions and trial-and-error. Even
without this final contribution, this experiment would a). provide valuable
insight into how we can use language models to improve program synthesis
performance and b). provide analyses comparing the capabilities of humans
and language models on subgoal generation for complex reasoning tasks.
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3.4 Timeline

Sept - Oct. 2023

Development of interface for human studies (decomposition with Theory of
Mind and stochastic planning) and preliminary experiments with language
model subgoals for program synthesis.

Nov - Dec. 2023
Preliminary experiments with human subjects and development of models of
human behavior. Collect human subgoals on complex reasoning domains.

Jan - Feb. 2024

Run experiments to collect human data on both decomposition studies. Com-
pare program synthesis performance between language model-generated sub-
goals and human-generated subgoals.

March - April. 2024

Compare human performance to model predictions and create a non-linear
task decomposition process with language models that is informed by human
studies.

May 2024
Write thesis.
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